High-Energy Multimessenger Emission from Supermassive Black Holes

Kohta Murase (Penn State/YITP) CRs & vs in the MM Era

All-Sky Multimessenger Flux & Spectrum

Extragalactic Multimessenger Connection

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if v sources are γ -ray transparent

→ Requiring hidden (i.e., γ-ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ-ray transparent sources)

Extragalactic Multimessenger Connection

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

→ Requiring hidden (i.e., γ -ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ -ray transparent sources)

Opacity Argument

Hidden (i.e., γ -ray opaque) v sources are actually "natural" in p γ scenarios

$$_{
m \gamma\gamma
ightarrow e^+e^-}$$
optical depth $au_{\gamma\gamma} pprox rac{\sigma_{\gamma\gamma}^{
m eff}}{\sigma_{p\gamma}^{
m eff}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$

implying that >TeV-PeV γ rays are cascaded down to GeV or lower energies

Necessity of Hidden Neutrino Sources for Medium-Energy v

Hidden (i.e., γ -ray opaque) v sources are actually "natural" in p γ scenarios

$$\gamma\gamma \rightarrow e^+e^-$$
 optical depth $au_{\gamma\gamma} pprox rac{\sigma_{\gamma\gamma}^{
m eff}}{\sigma_{p\gamma}^{
m eff}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$

implying that >TeV-PeV γ rays are cascaded down to GeV or lower energies

Not many sources can explain 10-100 TeV ν data (KM, Guetta & Ahlers 16 for various possibilities) AGN seem to have more energy budget to spare: $Q_{CR} \sim Q_X \sim 2x10^{46}$ erg Mpc⁻³ yr⁻¹

Prediction of Hidden Neutrino Sources

Hidden (i.e., γ -ray opaque) v sources are actually "natural" in p γ scenarios

 $\gamma\gamma \rightarrow e^+e^$ optical depth $\tau_{\gamma\gamma} \approx \frac{\sigma_{\gamma\gamma}^{\text{eff}}}{\sigma_{p\gamma}^{\text{eff}}} f_{p\gamma} \sim 1000 f_{p\gamma} \gtrsim 10$ KM. Kimura & Meszaros 20 PRL

accretion disk + "corona" opt/UV=multi-temperature blackbody X-ray=Compton by thermal electrons

All-sky 10-100 TeV neutrino flux can be explained by AGN But do such hidden v source (candidates) exist??

NEUTRINO ASTROPHYSICSEvidence for neutrino emission from the nearby
active galaxy NGC 1068Science

YES!

IceCube Collaboration*†

ASTRONOMY

Neutrinos unveil hidden galactic activities By Kohta Murase¹²³

An obscured supermassive black hole may be producing high-energy cosmic neutrinos

NGC 1068 as a Hidden Neutrino Source

NGC 1068 as a Hidden Neutrino Source

 $L_v \sim 2x10^{42}$ erg/s << $L_{bol} \sim 10^{45}$ erg/s <~ $L_{Edd} \sim 10^{45}$ erg/s: reasonable energetics

Neutrino Production Models

$$p + \gamma \rightarrow N\pi + X$$
$$p + p \rightarrow N\pi + X$$

Facts & Questions, Implications?

v facts:

- $L_v \sim 2x10^{42} \text{ erg/s} << L_X \sim 7x10^{43} \text{ erg/s}, L_{bol} \sim 10^{45} \text{ erg/s} <\sim L_{Edd}$
- Hidden source $L_v >> L_\gamma$
- d=10 Mpc, $M_{BH} \sim 10^7 M_{sun}$, Compton-thick ($N_{H} \sim 10^{25} \text{ cm}^{-2}$)
- NGC 1068 (~4σ), NGC 4151 (~3σ)

Where and how are vs are produced?

- Cosmic-ray energetics
 L_{CR} >~ 10⁴³ erg/s (>~5x10⁴² erg/s for pp, >~5x10⁴³ erg/s for pγ): reasonable
 But challenging for s>~2 L_{CR} >~ 0.5x10⁴⁴ erg/s (and more for pγ)
- Properties of emission regions (size, magnetization etc.)
- Production mechanisms (pp or pγ)

How typical is NGC 1068 as a neutrino active galaxy?

- Why is NGC 1068 v-brightest? How about other AGNs?
- Is the all-sky neutrino flux explained by jet-quiet AGNs?

Where Do Neutrinos Come from?

compatible w. p γ calorimetry (f_{p γ}>1) condition: R < 30-100 R_s Black hole: sub-PeV proton accelerator & efficient beam dump

Updated Fermi Analysis & Impacts of Magnetic Fields

Updated Multimessenger Implications for v Production Sites and Coronae

If v emission comes from X-ray coronae, plasma should be magnetically dominated

$$\beta = \frac{8\pi n_p k_B T_p}{B^2} \approx \frac{\tau_T G M_{\rm BH} m_p}{\sqrt{3} \zeta_e \sigma_T R^2 U_{\gamma}} \xi_B^{-1} \approx \left(\frac{\tau_T}{\sqrt{3} \zeta_e \lambda_{\rm Edd}}\right) \xi_B^{-1} \quad \begin{array}{l} \tau_{\rm T} \sim 0.1 \text{--}1 \text{ for X-ray corona, } \lambda_{\rm Edd} \sim 0.5 \\ \xi_B \sim 0.1 \text{ leads to } \beta < 1 \end{array}$$

Multimessenger Implications for Neutrino Production Mechanisms

- Multimessenger connection is robust and must be considered
- Exotic models are excluded if relevant processes are consistently included
- Also unlikely by the energetics requirement: $L_{CR} < L_{bol} \sim L_{Edd} \sim 10^{45} \text{ erg/s}$

Coronal Regions: Magnetized & Collisionless

3D RMHD simulation w. Athena++

 $T_e < T_p$ (two-temperature corona) collisionless for protons

1046

Coronal Regions: Magnetized & Collisionless

3D RMHD simulation w. Athena++

T_e < T_p (two-temperature corona) collisionless for protons

Particle Acceleration: Fast or Slow?

pγ→pe⁺e⁻ (Bethe-Heitler process) is important for protons producing 1-10 TeV vs (KM, Kimura & Meszaros 20 PRL)

Simulating Particle Acceleration in Turbulence

8.0

4.0

2.0

0.5

0.25

0.125

t a 10

NGC 1068: Corona Model with Stochastic Acceleration

Why NGC 1068? How about Others?

- Prediction of the coronal model: X-ray bright AGN ~ v bright AGN brightest AGN in north: NGC 1068, NGC 4151 (KM+ 20 PRL, KM+ 24 ApJL)
 brightest AGN in south: NGC 4945, Circinus
- 2.7σ excess of vs from NGC 4151 and CGCG 420-015
 2.9σ excess of vs from NGC 4151 (IceCube Collaboration 24a, 24b, Neronov+ 24)
- Unobscured AGNs like NGC 4151 are relevant for model discrimination

KM, Karwin, Kimura, Ajello & Buson 24 ApJL

Why NGC 1068? How about Others?

(IceCube Collaboration 24c)

- Prediction of the coronal model: X-ray bright AGN ~ v bright AGN brightest AGN in north: NGC 1068, NGC 4151 brightest AGN in south: NGC 4945, Circinus
- 3.0σ excess of vs from Seyferts in south
- Promising targets for neutrino detectors in the northern hemisphere (KM3Net, Baikal-GVD, P-ONE, Trident), as well as IceCube-Gen2

Jet-Quiet AGN Can Successfully Explain the All-Sky v Flux

- The all-sky v flux has been explained by the AGN corona model (KM+20 PRL) (ex. X-ray luminosity function is used in the MKM20 corona model)
- Differential v flux at 10 TeV: ~10⁻⁸ GeV cm⁻² s⁻¹ \rightarrow EL_E ~ 2x10⁴¹ erg/s
- NGC 1068-like AGNs are rare: n~10⁻⁵ Mpc⁻³ → EQ_E ~ 6x10⁴³ erg Mpc⁻³ yr⁻¹
- Comparable to the required energy budget: EQ_E ~ 5x10⁴³ erg Mpc⁻³ yr⁻¹
- Possible to "simultaneously" to explain the all-sky v flux within uncertainty
- Higher-energy neutrinos originate from lower-luminosity AGN

Neutrinos: More Hints & More Tests

- 2.6 σ with 8 yr upgoing v_µ events and IR-selected AGN (IceCube 22 PRD)
- Good news for KM3Net/Baikal-GVD/P-ONE: many bright AGN in south

testable w. near-future data or by next-generation neutrino detectors

Radiative Inefficient Accretion Flows

Detectability of Nearby Low-Luminosity AGN

- Detection of MeV γ due to thermal electrons is promising (CR-induced cascade γ rays are difficult to observe)
- Nearby LL AGN can be seen by IceCube-Gen2/KM3Net

Coincidences w. Optical Transients

Tidal disruption events (TDEs) – supermassive black hole flares

- 5 TDE coincidences have been reported (van Velzen+ 23, Jiang+ 23)
- All are rare optical transients w. strong infrared echoes
- Possible neutrino time delays w. ~150-300 day

Neutrinos from Tidal Disruption Events?

Summary

- Multimessenger analyses on 10 TeV ν data require hidden CR accelerators
- Jet-quiet AGNs: the most promising origin (whether ~3-4 σ is real or not)
- NGC 1068 & NGC 4151: indications of hidden ν sources Implications:
- v emission regions should be compact: R < 10-30 R_s
- Low-energy cosmic-ray spectrum should be hard (s<~2) to satisfy $L_{CR} < L_X$
- Strongly magnetized: $\xi_B > \sim 0.1$ (supporting low- β coronae)
- NGC 4151 may be a key for discriminating models (corona vs shock)
- Relevance of AGNs in the southern sky (NGC 4945, Circinus)
- Consistent with the measured all-sky ν flux in the 10-100 TeV range
- Physical connections to LL AGNs and TDEs

Future:

- More statistics, next-generation v detectors (KM3Net, Baikal, P-ONE, Gen2)
- Synergy w. hard X-ray and MeV γ -ray observations
- Understanding coronal plasma & CR acceleration in the vicinity of black holes

Multi-Messenger Astro-Particle "Backgrounds"

Energy generation rate densities of 3 messengers are all comparable

(KM & Fukugita 19, Yu, Zhang & KM 20)

High-Energy Astro-Particle Grand-Unification?

First concrete example of the "grand-unification" scenario with detailed simulations

- Jetted AGN as "UHECR" accelerators

(see also KM & Waxman 16)

- Neutrinos from confined CRs & UHECRs from escaping CRs
- Smooth transition from PeV (source v) to EeV (cosmogenic v)

cosmic-ray reservoir scenario

accelerator (ex. AGN)

pp/pγ reactions

CR

reservoir (ex. galaxy cluster)

