

Particle acceleration in superbubbles: from dreams to reality

Thibault Vieu w/ L. Härer, C. Larkin, B. Reville

MPIK, Heidelberg

Star-forming regions as VHE y-ray sources \cdot

Most massive stars (supernova progenitors) are born in clusters or OB associations

Several massive star clusters are observed in gamma-rays up to 100s TeV

HAWC Cygnus

HAWC J2031

 $7 -$

 ϕ (°)

Compact star clusters: the core

 \sim 100 O stars crowded in a few pc³ Stellar winds interact (collide) efficiently

The region is highly turbulent. Thermal pressure builds up.

Compact star clusters: the core

Vieu, Härer, Reville 2024 **3**

 \sim 100 O stars crowded in a few pc³ Stellar winds interact (collide) efficiently

The region is highly turbulent. Thermal pressure builds up.

MHD simulations: unravelling the B field **4**44

expand and mix the strong surface fields

Härer+, in prep

Maximum energy in stellar wind cavities **6**5

Maximum energy in stellar wind cavities

Adiabatic losses upstream => E_{max} < V_w B R

Super-Alfvénic stellar wind => B << V_w sqrt(4 π ρ)

Absolute upper limit **independent of conditions downstream**

 $=$ > $E_{\text{max}} \ll$ sqrt(2 V_w L_w)/c \sim 100 TeV

Maximum energy in stellar wind cavities

Adiabatic losses upstream $\epsilon > E_{\text{max}} < V_w B$ R

Super-Alfvénic stellar wind => B << V_w sqrt(4 π ρ)

 $=$ > E_{max} << sqrt(2 V_w L_w)/c \sim 100 TeV

Emax < 100 TeV *absolute upper limit, would require very powerful stars, fast rotator, strongly magnetised (>> kG surface fields)*

5

Absolute upper limit **independent of conditions downstream and independent of collective effects.**

 \geq Same limitations in the case of wind-wind collisions.

 \triangleright In general, particle advection downstream (escape) is more limiting: E_{\max} << 100 TeV

The dream of collective effects...

Beyond the core: cluster wind termination shock

Stellar wind interactions => pressure builds up in the core => heating of the ISM and superbubble expansion

7

Superbubble expansion => pressure drops outside of the core

Beyond the core: cluster wind termination shock **Beyond the core: cluster wind termination shock**

Stellar wind interactions => pressure builds up in the core => heating of the ISM and superbubble expansion

Superbubble expansion => pressure drops outside of the core

Pressure gradient

- => the flow accelerates outward
- => becomes supersonic
- => terminates at the "wind termination shock"

The dream of PeVatron

Emax at the WTS: U ~ 2000 km/s $R \sim 10$ pc $B \sim 10 \mu G$ (cannot be much more otherwise the shock is not super-Alfvénic)

The dream of PeVatron

Emax at the WTS: U ~ 2000 km/s $R \sim 10$ pc $B \sim 10 \mu G$ (cannot be much more otherwise the shock is not super-Alfvénic)

=> E_{\max} < 1 PeV

Cluster wind termination shock: Westerlund 1 example Cluster wind termination shock: Westerlund 1 example

- Most powerful star cluster in the Galaxy L_{w} ~ 10 39 erg/s, M ~ 5e-4 Msol/yr
- Very compact (hundreds of O stars and 24 WR stars within ~ 1 pc³)

Ring-shape ɣ-ray emission up to 100 TeV

Cluster wind termination shock: Westerlund 1 example Cluster wind termination shock: Westerlund 1 example **³**

11

=> hadronic scenario usually disfavored, unless there are very dense molecular clouds nearby (not the case for Wd1 but see A. Inventar's poster for W43)

Intense UV field near the cluster \Rightarrow IC emission is hard to hide

The dream of spherical symmetry

Westerlund 1 is exceptionnally powerful and compact. ''Standard'' star clusters have an **asymmetric** distribution of powerful stars over a few parsecs. This produces **highly asymmetric cluster outflows**.

 \blacktriangleright The core is a mess, yet small spherical shocks cannot accelerate beyond \sim 100 TeV (at very best and despite collective effects)

- Standard cluster winds are asymmetric, which is expected to reduce the acceleration efficiency and steepen the spectrum
- ◆ Bottom line: we expect somewhat steep gamma-ray spectra with cut-off around 10 TeV

 \blacktriangleright The core is a mess, yet small spherical shocks cannot accelerate beyond \sim 100 TeV (at very best and despite collective effects)

- Standard cluster winds are asymmetric, which is expected to reduce the acceleration efficiency and steepen the spectrum
- Bottom line: we expect somewhat steep gamma-ray spectra with cut-off around 10 TeV
- Disappointing? … **Well, as of now, this is exactly what we observe!**

Compact star clusters: let's recap

Compact star clusters: let's recap

- \blacklozenge The core is a mess, yet small spherical show 10^{-10} TeV (at very best and despite collective effective ϵ
- \triangle Standard cluster winds are asymmetric, which is expected to acceleration efficiency and steamen the snd
- acceleration efficiency and steepen the spectrum of the spectrum line: we expect somewhat steep gangle $\frac{360}{30}$
10 TeV ◆ Bottom line: we expect somewhat steep gament at $\frac{b}{\omega}$ i^{o-1} 10 TeV
- ◆ Disappointing? ... Well, as of now, this is $\begin{bmatrix} 8 \\ 2 \\ \text{m} \end{bmatrix}$ $\begin{bmatrix} 6 \\ \text{m} \end{bmatrix}$ GDE estimation2

 … with one exception: Cygnus.

Compact star clusters: let's recap

- \blacklozenge The core is a mess, yet small spherical show 10^{-10} TeV (at very best and despite collective effective ϵ
- \triangle Standard cluster winds are asymmetric, which $\sum_{n=1}^{\infty}$ is $\frac{1}{n}$
- acceleration efficiency and steepen the spectrum of the spectrum line: we expect somewhat steep gangle $\frac{360}{30}$
10 TeV ◆ Bottom line: we expect somewhat steep gament at $\frac{b}{\omega}$ i^{o-1} 10 TeV
- ◆ Disappointing? ... Well, as of now, this is $\begin{bmatrix} 5 \ y \end{bmatrix}$ and $\begin{bmatrix} 6 \ y \end{bmatrix}$ and $\begin{bmatrix} 6 \ y \end{bmatrix}$ biffuse Model

 … with one exception: Cygnus.

Highly extinct, very complex region

Optical (commons.wikimedia.org/Luka)

NAP nebula Cygnus X Sadr nebula (ɣ-Cygni)

8 µm map (Fermi collab. 2012)

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

8 µm map (Fermi collab. 2012) CO intensity (MWISP/Zhang+2024)

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

CO molecular clouds (> 1e6 Msol!) Most massive molecular cloud within 2 kpc

14

8 µm map (Fermi collab. 2012) Emig+2022 (CGPS data)

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

CO molecular clouds (> 1e6 Msol!) Most massive molecular cloud within 2 kpc

Diffuse radio, radio hotspots

8 µm map (Fermi collab. 2012) Albacete-Colombo+2023 (Chandra)

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

CO molecular clouds (> 1e6 Msol!) Most massive molecular cloud within 2 kpc

Diffuse radio, radio hotspots

Diffuse X-rays

eROSITA

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

CO molecular clouds (> 1e6 Msol!) Most massive molecular cloud within 2 kpc

Diffuse radio, radio hotspots

Diffuse X-rays

Gigantic X-ray shell / Hɑ filaments...

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

14

CO molecular clouds (> 1e6 Msol!) Most massive molecular cloud within 2 kpc

Diffuse radio, radio hotspots

Diffuse X-rays

Gigantic X-ray shell / Hɑ filaments...

Several VHE sources

Cygnus OB2 association Cyg X-3 microquasar PSR J2032+4127 pulsar Ɣ-Cyg SNR...

Highly extinct, very complex region

Diffuse clouds, HII regions, photodissociation rims, cavities

Most molecular cloud with the cloud with \sim kpc

CO molecular clouds (> 1e6 Msol!)

CYGNUS IS NOT A **"STAR CLUSTER"**

It is an extremely complex star-forming environment which nobody understands. Gigantic X-ray shell / Hɑ filaments... It most likely results from of a long history of starbirth events / SNe explosions.

Several VHE sources

Cygnus OB2 association Cyg X-3 microquasar PSR J2032+4127 pulsar Ɣ-Cyg SNR...

The Cygnus OB2 star cluster association **15**

Declination

Distance \sim 1.4 kpc 1.65 kpc Age \sim 3-5 Myr Core diameter \sim 30 pc (!)

78 O stars 3 off-centred WR stars

 L_{w} ~ 2 x 10³⁸ erg/s

Simulating Cygnus OB2

We put Cygnus OB2 in a (big) numerical box (1000^3 cells) Solve with the PLUTO code on the Max-Planck HPC $($ \sim 10 6 cpu-hour...)

w/ C. Larkin

Simulating Cygnus OB2

Vieu et al. 2024b

We put Cygnus OB2 in a (big) numerical box (1000^3 cells) Solve with the PLUTO code on the Max-Planck HPC $($ \sim 10 6 cpu-hour...)

Simulation over 2 Myr, including 400 kyr of WR phase

What's going on in Cygnus? - our interpretation **1880** (18

What's going on in Cygnus? - our interpretation

e - accelerated at individual WTS => shrinking emission more and more correlated with the core

erg/cm²/s/sr

 \mathcal{R}

 -6

 $1e-9$

p-p on nearby clouds from past SNR => emission correlated with molecular clouds

Summary

- **Star clusters are intricate objects in complex regions** *in most cases beyond the scope of spherical models asymmetric distribution of stars produce asymmetric outflows*
- **Theories of collective effects (wind-wind, stochastic) fail on close inspection** *adiabatic losses in spherical winds, low energy budget of turbulence…*
- **Yet there is almost no tension with current observations** *Wd 1, W43, Cygnus-X, 30 Doradus..., can be explained by acceleration in stellar winds*
- **A component is missing for Cygnus between 100 TeV and 1 PeV** *but this is a crowded region, difficult to observe at any wavelength. A past SN can fill the gap*
- **Star clusters are not expected to be PeVatrons** *in the sense that they can't contribute substantially to the CR spectrum beyond the knee*

• Back up

Why asymmetric outflows

Pressure gradient between the core and the superbubble => the flow accelerates outward

But the flow is blocked by the individual winds at the edge of the core => **asymmetric launching**

Instead of a spherical strongly supersonic wind, we obtain 2D sheets and 1D transsonic streams

> **ac**

> **num**

> **er**

No large-scale shock but a hot, turbulent(ish) cavity

MHD turbulence => Stochastic (re)acceleration / Fermi II Emax = acceleration rate VS escape rate

No large-scale shock but a hot, turbulent(ish) cavity

MHD turbulence => Stochastic (re)acceleration / Fermi II Emax = acceleration rate VS escape rate

Vieu, Reville, Aharonian 2022: Test-particle, Bohm, model for strong turbulence cascade *(Bykov's renormalisation theory)* => most optimistic!

No large-scale shock but a hot, turbulent(ish) cavity

MHD turbulence => Stochastic (re)acceleration / Fermi II Emax = acceleration rate VS escape rate

Vieu, Reville, Aharonian 2022: Test-particle, Bohm, model for strong turbulence cascade *(Bykov's renormalisation theory)* => most optimistic!

No large-scale shock but a hot, turbulent(ish) cavity

MHD turbulence => Stochastic (re)acceleration / Fermi II Emax = acceleration rate VS escape rate

Vieu, Reville, Aharonian 2022: Test-particle, Bohm, model for strong turbulence cascade *(Bykov's renormalisation* => most optimistic!

No large-scale shock but a hot, turbulent(ish) cavity

MHD turbulence => Stochastic (re)acceleration / Fermi II Emax = acceleration rate VS escape rate

The 1/r dream

2-20 TeV 25-100 TeV 1D SBP $(10^{10} \text{ erg cm}^2 \text{ s}^1 \text{ sr}^1)$ $sr⁻¹$ $SBP (10⁹ erg cm² s⁻¹ sr⁻¹)$ 3. 1D SBP (10⁻¹⁰ erg cm⁻² s⁻¹ (b (C) 2.5 6 2.0 1.5 1.0 $\overline{2}$ GDE
Tota \mathcal{D} 0.5 \overline{a} 6 10 8 $\mathbf 0$ \overline{c} 8 \overline{c} 6 10 0 0 Angular distance (°) Angular distance (°)

- These profiles are obtained by averaging over lineouts.
- This averaging does not make sense when the morphology is not symmetric. It will smear out any feature and give an overall decreasing function.

>100 TeV

(d)

8

6

Angular distance (°)

- The result strongly depends on the chosen "centre"
- Note: these profiles are not even close to $r^{-1/3}$!

 $12¹²$

The 1/r dream

