Cosmic-ray acceleration by supernova remnants

Cosmic Rays and Neutrinos in the Multi-Messenger Era APC, 9-13 December 2024

Jacco Vink

ANTON PANNEKOEK INSTITUTE

Supernovae & supernova remnants

- 2-3 SNe/century ($\overline{\Delta t} \approx 40$ yr), E=10⁵¹ erg $\frac{dE}{dt} \approx \frac{E}{\overline{\Delta t}} \approx 8 \times 10^{41} \text{ erg s}^{-1} \approx 5\% - 10\% \dot{E}_{cr}$
- Power sufficient, but can they accelerate to the "knee"? Mechanism: diffusive shock acceleration mostly by forward shock

Diffusive shock acceleration

- Particles interact w. plasma thru magnetic fields
- Particles gain energy by crossing shock:
- $\Delta V_{\text{plasma}} \rightarrow \text{Lorentz boost of } \frac{\Delta E}{E} \approx \frac{\Delta V}{E}$
- cE• Diffusion: particles can cross shock $D = \frac{1}{3}c\lambda_{\rm mfp} = \frac{1}{3}\eta r_{\rm g} = \frac{1}{3}\eta \frac{1}{eB}$
- Acceleration time: $\tau_{\rm acc} \approx \frac{8D_0}{V_c^2} \rightarrow E_{\rm max} \propto \eta^{-1} B V_s^2 t \propto \eta^{-1} B t^{2m-1}$
 - $R \propto t^m$, E_{max} increases for m>0.5 (Sedov m=0.4)
- Higher energy: keep V_s for long time (t), strong, turbulent B ($\eta \approx \langle (\delta B/B)^2 \rangle^{-1} \approx 1$)

Evidence for cosmic-ray acc. by SNRs

- Earliest evidence (50s): radio synchrotron emission (GeV electrons) 1990s (Koyama+95): X-ray synchrotron (10-100 TeV electrons) 2000s: gamma-ray emission (Fermi, IACTs) • pion-production and decay \rightarrow cosmic-ray ions ($h\nu \sim 0.1E_{\rm p}$)

- inverse Compton scattering → electrons
 - bremsstrahlung -> electrons (subdominant)

X-ray synchrotron radiation

- - Acceleration needs to be fast

SN1572 (Chandra)

Electrons "out of contact with shock" will not emit X-rays → Narrow X-ray filaments Combining acceleration & cooling ($\tau_{acc} \approx \tau_{cool}$): $h\nu_{cutoff} \approx 1.4\eta^{-1} \left(\frac{V_{sh}}{5000 \text{ J}}\right)^2$ keV

X-ray synchrotron radiation

- - Acceleration needs to be fast
- X-ray synchrotron: requires $\eta \approx 1$ and $V_{\rm sh} \gtrsim 3000$ km/s

SN1572 (Chandra)

Electrons "out of contact with shock" will not emit X-rays → Narrow X-ray filaments Combining acceleration & cooling $(\tau_{acc} \approx \tau_{cool})$: $h\nu_{cutoff} \approx 1.4\eta^{-1} \left(\frac{V_{sh}}{5000}\right)^2$ keV

Turbulent, amplified magnetic fields

- All young (<2000 yr) SNRs show evidence for X-ray synchrotron
- Width limitations due to synchrotron cooling: $B_2 pprox 110 \eta^{1/3}$
 - $B_2 \sim 20 500 \ \mu G$
- Prediction Bell (2004) instability $U_B = -$
- Very early on in stellar wind interaction
 - e.g SN1993J, Fransson&Björnson '98

nce for X-ray synchrotron poling: $B_2 \approx 110 \eta^{1/3} \left(\frac{\Delta r}{10^{17} \text{ cm}}\right)^{-2/3} \mu \text{G}$

$$B^{2} \propto \rho_{0} V^{-3}$$

 8π : B~50 Gauss
8

X-ray synchr. reverse shock

1 arcmin 1 pc/3.3 ly

NuStar Grefenstette +15

X-ray synchr. reverse shock

NuStar Grefenstette +15

X-ray synchr. reverse shock Chandra 2019-2004

Vink+ 2022

NuStar Grefenstette +15

X-ray synchr. reverse shock Chandra 2019-2004

Vink+ 2022

Chandra

NuStar Grefenstette +15

X-ray synchr. reverse shock

- Reverse shocks moves back in western part Rev. shock velocities peak there: 7000-8000 km/s
- Rev. shock may be important for accelerating dust or high metal plasmas

Rev. has high B-field despite low ejecta field -> very efficient amplification

Synchrotron radiation polarization

Radiation emitted from any part of trajectory

Synchrotron radiation intrinsically polarized B-orientation perpendicular to EM E-vector

Electron with acceleration $\underline{\mathbf{a}} (\perp \text{ to } \underline{\mathbf{B}}), \text{ velocity } \underline{\mathbf{v}},$ pitch angle α (not shown) Ŧ $\gamma^{-1} \operatorname{rad}$ Polarisation To observer

Synchrotron radiation polarization

Radiation emitted from any part of trajectory

 Synchrotron radiation intrinsically polarized B-orientation perpendicular to EM E-vector

intrinsically ~70% polarized

Magnetic field configuration

- X-ray synchrotron \rightarrow requires turbulent magnetic fields!
 - Theory: CR resonant perturbations + Bell (2004) instability (upstream) Isotropic B (?)
- Downstream: expect tangential field
- Radio observations: young SNRs have radial B-fields, old SNRs tangential
 - Magnetic fields radially stretched in young SNRs, but where?

Measuring B-field orientations in X-rays with IXPE

- Imaging X-ray Polarimetry Explorer (IXPE) launched Dec. 9 2021
- Carries 3 gas-pixel detectors
- Uses photo-electron direction to measure B-field EM wave
- Effective energy range: 2-7 keV

IXPE Statistical maps (χ_2^2)

- $\sim 4-5\sigma$ detection of polarization
- correct for thermal contributions
- Cas A: only after some tricks:
 - entire SNR only
 - 5% pol. degree
 - high downstream turbulence

X-ray polarization overview

	Age (yr)	B field	P.F.	Orientation B-field	Ref.
Cas A	~350	~250 µG	~5%	radial	Vink+ '22
Tycho	452	~200 µG	~10%	radial	Ferrazzoli+ '23
SN1006	1018	~80 µG	~20%	radial	Zhou+ '23
RX J1713	~1500	~20 µG	26%—30%	tangential	Ferrazzoli+ '24
Vela Jr	~3000	~10 µG	10%—20%	tangential	Prokhorov+ '24

- Radial vs tangential: age (or B-field?) dependence in X-rays hydrodynamic instabilities close to shock? (Inoue+ '13)
- pol. frac. low (5-10%)/high B turbulence
- - lack of theory regarding downstreem turbulence

Note: turbulence must be high enough to allow X-ray synchrotron (i.e. $\eta \approx 1$) But: low B: long cooling time -> may affect volume of X-ray emission region

Gamma rays

- In 2 decades big jump in knowledge:
 - GeV gamma rays: Fermi-LAT, Agile
 - TeV gamma rays: H.E.S.S., Veritas, MAGIC
 - TeV-PeV gamma rays: HAWC, LHAASO
- In the future: Cherenkov Telescope Array Observatory (CTAO), Southern Wide-field Gamma-ray Observatory (SWGO), upgrades LHAASO

gile as, MAGIC HAASO e Array Observatory (CTAO), Sout ry (SWGO), upgrades LHAASO

SNRs in gamma rays

Not always clear whether leptonic or hadronic (or combination) ow R_field (<30

on bump) s SNR)

Some "mature" SNRs (≥104 yr)

- Clear pion bumps
 - →Hadronic gamma rays
- Proton cutoffs 20—200 GeV
- Highest energy CRs must have escaped by t~10,000 yr
- Direct evidence for escape:
 - W28: nearby TeV source associated with MC
 - RX J1713: evidence for TeV gamma-rays outside X-ray boundary

Ackermann+ '13 (Fermi-LAT)

Supernova W44 & IC 443 Neutral Pion Decay Spectral Fit

Escape of cosmic rays from RX J1713?

- Escape: CRs diffuse ahead with $\Delta r \gtrsim 0.1 r$ (no longer in acc. process)
- RX J1713: measured 13% -> evidence for escape
- Diffusion inferrence: $\frac{B}{-10} \approx 1.1 \left(\frac{E}{-10}\right)$
 - suggest low B, or sudden dying dov

0.1r (no longer in acc. process) e for escape

$$\frac{1}{V}\left(\frac{\Delta t}{500 \text{ yr}}\right)\left(\frac{\Delta r}{\text{pc}}\right)^{-2}\left[1+\frac{u_{\text{shock}}\Delta t}{\Delta r}\right]^{-1}\mu\text{G}$$

wn of turbulence ($\eta \gg 1$)

- γ-rays: unresolved
- Inferred proton cutoff: $E_c \approx 3$ TeV (MAGIC '17;Veritas '20)

- Y-rays: unresolved
- Inferred proton cutoff: $E_c \approx 3$ TeV (MAGIC '17;Veritas '20)

• Problem: this is close to electron cutoff, and these are loss limited; expect: $E_p >> Ee!$

- γ-rays: unresolved
- Inferred proton cutoff: $E_c \approx 3$ TeV (MAGIC '17;Veritas '20)
- Possible solutions:

X-ray spectral index map (Helder&JV '08)

Problem: this is close to electron cutoff, and these are loss limited; expect: $E_p >> Ee!$

• most hadronic γ rays from reverse shock region (dense!) with V_s~1500-8000 km/s • in addition: most hadrons are not protons: Cas A oxygen dominated!; CSM: He/N!

- γ-rays: unresolved
- Inferred proton cutoff: $E_c \approx 3$ TeV (MAGIC '17;Veritas '20)
- Possible solutions:

X-ray spectral index map (Helder&JV '08)

Problem: this is close to electron cutoff, and these are loss limited; expect: $E_p >> Ee!$

• most hadronic γ rays from reverse shock region (dense!) with V_s~1500-8000 km/s • in addition: most hadrons are not protons: Cas A oxygen dominated!; CSM: He/N!

- γ-rays: unresolved
- Inferred proton cutoff: $E_c \approx 3$ TeV (MAGIC '17;Veritas '20)
- Possible solutions:
- CTAO/future: reveal a forward shock component to higher energies

X-ray spectral index map (Helder&JV '08)

Problem: this is close to electron cutoff, and these are loss limited; expect: $E_p >> Ee!$

• most hadronic γ rays from reverse shock region (dense!) with V_s~1500-8000 km/s • in addition: most hadrons are not protons: Cas A oxygen dominated!; CSM: He/N!

A peculiar SNR N132D (LMC)

- Powerful SNR (E~5x10⁵¹ erg) evolving in windblown cavity
- Oxygen-rich: "older version" of Cas A, t~2500 yr
- Interacting with molecular cloud in SW
- H.E.S.S. (2021): no need for cutoff ($E_c = 19^{+60}_{-10}$ TeV, not significant)
- Proton cutoff ~120 TeV
- Older than Cas A, but cutoff (if any) at much higher energy!

H.E.S.S. (2015,2024): detection of a source next to SN1987A: 30DorC • Powered by LH 90 stellar cluster

- H.E.S.S. (2015,2024): detection of a source next to SN1987A: 30DorC
 - Powered by LH 90 stellar cluster
- X-rays: big (r≈47pc) round shell emitting X-ray synchrotron (W part).
 - requires V> 3000 km/s: much higher than superbubbles (~50 km/s)
 - requires SNR with t \approx 6000 yr expanding in low density n_H \approx 5x10⁻⁴cm⁻³
 - long acceleration time \rightarrow could potentially be a PeVatron!

- H.E.S.S. (2015,2024): detection of a source next to SN1987A: 30DorC
 - Powered by LH 90 stellar cluster
- X-rays: big (r≈47pc) rounc
 - requires V> 3000 km/s:
 - requires SNR with t≈60
 - long acceleration time

$$\begin{array}{c}
 1e-8 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\$$

• H.E.S.S. (2015,2024): detection of a source next to SN1987A: 30DorC

- Powered by LH 90 stellar cluster
- X-rays: big (r≈47pc) rounc
 - requires V> 3000 km/s:
 - requires SNR with t≈60
 - long acceleration time
- X-ray width: $B \sim 5-15 \mu G$ –

Can SNRs be PeVatrons

- In general not PeVatrons:
 - Not observationally (at best E_{max}~100 TeV)
 - SNRs V<5000 km/s, B~10 µG, 1000 yr:

 $E_{\rm max} \approx 3 \times 10^{14} \eta^{-1} \left(\frac{B_0}{10 \ \mu \rm{G}}\right) \left(\frac{V_{\rm s}}{5000 \ \rm{km/s}}\right)^2 \left(\frac{t}{500 \ \rm{yr}}\right) \ \rm{eV}$

- But some hope: special cases (1% of SNe, see Giacinti talk)
 - long t \rightarrow 30DorC in superbubble?
 - - example: SN 1993J (B~50 Gauss, V~20000 km/s)
- Observationally: target young extragalactic SNe in dense CSM

• high B \rightarrow Cas A (now >100 μ G) at t=1-30 yr (B amplified, V_{s~}10000 km/s)

Can SNRs be PeVatrons

- In general not PeVatrons:
 - Not observationally (at best E_{max}~100 TeV)
 - SNRs V<5000 km/s, B~10 µG, 1000 yr:

 $E_{\rm max} \approx 3 \times 10^{14} \eta^{-1} \left(\frac{B_0}{10 \ \mu \rm{G}}\right) \left(\frac{V_{\rm s}}{5000 \ \rm{km/s}}\right)^2$

- But some hope: special cases (1% of SNe, see Giacinti talk)
 - long t \rightarrow 30DorC in superbubble?
 - - example: SN 1993J (B~50 Gauss, V~20000 km/s)
- Observationally: target young extragalactic SNe in dense CSM

Take away points

- SNRs are not generally PeVatrons
 - But some may be (when very young and/or in special environments)
- X-ray synchrotron to study DSA properties:
 - X-ray synchrotron constrains diffusion: close to Bohm for E~10-100 TeV • Clear evidence for B-field amplification (and $B^2 \propto \sim \rho V^3$)

 - IXPE: young SNRs radial & turbulent magnetic fields
- Gamma-rays
 - Evidence for particles up to 100 TeV in young SNRs
 - Mature SNRs: >1 TeV particles have escaped
 - Direct evidence for escaping cosmic rays
- Future:
 - Very young SNRs (SNe in dense CSM)
 - Look for SNR haloes of escaping CRs
 - Details in gamma-ray spectrum due to composition

