Cosmic rays and neutrinos in the multi-messenger Era

Unveiling the Nature of the Cosmic Ray Knee by LHAASO

Huihai He Institute of High Energy Physics, CAS 2024-12-10

Outline

- Introduction
- A calorimetric energy estimator

- PRD 106, 123028(2022)
- The all particle energy spectrum and $\langle lnA \rangle$ in 0.3-30 PeV prl 132, 131002 (2024)
- The total logarithmic mass
- The nature of the cosmic ray spectrum knee

arXiv:2411.13793

- Discovery of an ankle-like structure
- Summary

The knee: a 65-year-old puzzle

- The most striking feature in the cosmic ray energy spectrum, whose origin remains enigmatic
- A key to the origin, acceleration and propagation of GCRs
- A result of subsequent cutoffs for individual elements, starting with the proton component
 - Z-dependent: $E_c = ZE_p$, associated with acceleration or propagation processes
 - A-dependent: $E_c = AE_p$, associated with new physics
 - Constant: $E_c = E_p$

Credit: Beringer et al.

A mess in current measurements

Precision measurements of the spectrum and mass are mandatory

Challenges in indirect measurement

- Spectra of single species: seriously dependent on MC
 - Interaction models
 - Composition models
 - Consistency between MC and data
- All particle spectrum
 - Composition-dependency in primary energy reconstruction
 - Model-dependency in both composition discrimination and energy reconstruction
 - Measurement of shower front, and far from shower maximum

• <lnA>: energy-dependent, interaction model dependent

Problems of traditional energy estimators

• Shower size (or density) is a function of primary energy and mass

A composition-independent energy estimator

necessary and sufficient condition: $\alpha = 1$

• Superposition principle $N_{\rm e} \propto E^{\alpha} A^{1-\alpha}$ $N_{\mu} \propto E^{\beta} A^{1-\beta}$ ($\alpha = 1.046, \beta = 0.9$) $1-\beta$ $\alpha=1$

$$N_{e*\mu} \equiv N_e^{\frac{1-\beta}{\alpha-\beta}} N_{\mu}^{\frac{\alpha-1}{\alpha-\beta}} = N_e^{0.68} N_{\mu}^{0.32} \propto E$$

- Heitler-Matthews model
 - calorimetric
 - $E = \xi_c^e N_{max} + \xi_c^{\pi} N_{\mu}$

$$= g\xi_c^e \left(N_e + \frac{\xi_c^{\pi}}{g\xi_c^e} N_{\mu} \right)$$

$$N_{e\mu} \equiv N_e + \frac{\xi_c^n}{g\xi_c^e} N_\mu = N_e + 25N_\mu$$

hhh@ihep.ac.cn Weaker dependence

Works only at shower maximum!

Weaker dependence on interaction models

 $\propto E$

LHAASO: Large High Altitude Air Shower Observatory

Major scientific goals

• Origin of GCRs

- Searching for GCR sources by measuring SED with an unprecedented sensitivity of 1% I_{Crab} at 50 TeV
- Energy spectra for individual compositions with energy from 10 TeV to 1 EeV, where the spectrum knees are located ullet
- Gamma ray astronomy
 - Searching for TeV γ sources, especially extended and transient ones, with an unprecedented survey sensitivity of 1% I_{Crab} at 3TeV.
- New physics frontier
 - dark matter, Lorentz invariance, new physics beyond LHC energy, etc

Large High Altitude Air Shower Observatory

Mt. Haizi (4410 m a.s.l., 29°21' 27.6" N, 100°08'19.6" E), Sichuan, China

KM2A: Kilometer-square Array

Area: 1.3 km²

Energy Range: 0.01-10 PeV (γ), 10¹⁴-10¹⁸ eV (h)

Ne=118864, N_{FD}=3061

3061 Beijing Time

Beijing Time : 2022-1-6, 0:28:20

 $N\mu$ =20421, N_{MD} =928

KM2A detector calibration for data and MC

• For data, as counters, detector charges

- of EDs are calibrated by using single particles in EAS
- of MDs are calibrated by using VEMs

APP 100 (2018) 22–28 NIMA 789 (2015) 143–149

• For MC, charges of EDs and MDs are calibrated as for data

Air pressure correction

- CIC (constant intensity cut) is used to calibrate the air pressure effect
- Both N_e and N_{μ} of data are corrected to the air pressure in MC

Event selection

- Event selection criteria:
 - θ : 10° 30° \rightarrow (610-690 g/cm²) ~ Xmax (0.3-30 PeV)
 - R_{core} : 320 420 m \rightarrow shower well contained, full efficiency @>0.3PeV GF is MC-independent
- Ne & Nµ in (40-200m) to avoid punch-through

 $GF = \pi \left(R_1^2 - R_2^2\right) \int_{1}^{30} \sin\theta \cos\theta \, d\theta \int_{1}^{360} d\varphi = 0.16 \left(km^2 sr\right)$

Comparison between MC and data

Energy reconstruction

10⁷

simulation data

— Horandel spectrum

10⁷

simulation data

GSF spectrum

<lnA> reconstruction

All-particle energy spectrum & <lnA>

18

From 350%(150%) to 12%

Precision measurement of the knee by KM2A

TLM: the touchstone for testing if proton spectrum breaks @ knee

 $F \equiv \sum f_i \quad m \equiv \langle \ln A \rangle \equiv \frac{\sum_i f_i \ln A_i}{\sum f_i}$ • Total logarithmic mass^{*i*}

 $\mathbf{M} \equiv \sum_{i} f_{i} \ln A_{i} = F \times m$

	P	He	CNO	MgAlSi	Fe
lnA	0	1.39	2.64	3.30	4.03

- More sensitive to structures of heavy nuclei (especially Fe)
- P (lnA=0) doesn't contribute to TLM, thus TLM servs as a touchstone for testing if proton spectrum breaks at the knee
 - No \rightarrow a similar structure in TLM as in the all-particle energy spectrum
 - Yes \rightarrow how much does proton contribute to the knee?

The all-particle and TLM spectra by KM2A

Does proton spectrum break at the knee?

- Parameters from LHAASO paper
 - All-particle flux $F' = F_0 \left(\frac{E}{1 PeV}\right)$
 - <lnA> ≻TLM
- Loss
 - All-particle flux $\Delta F = F' F$
 - TLM $\Delta M = M' M$
 - $< lnA > of \Delta F$

 $m_{\Delta F} = \frac{\Delta M}{\Delta F} = q_p \times m_p + (1 - q_p) \times m_{\geq He} = (1 - q_p) \times m_{\geq He}$

• TLM anticipation

 $M'' = M' - \Delta F \times m_{\Delta F}$

 $M' = F' \times m' = F_0 \times M_0 \left(\frac{E}{1 PeV}\right)$

 $m' = m_0 \left(\frac{E}{1 \ PeV}\right)^{\gamma_m}$

- H₀: no, $q_p = 0 \rightarrow \text{best-fit}$ $m_{\Delta F} = \ln 4$
- H_1 : yes, $q_p > 0 \rightarrow best-fit$ $m_{\Delta F} = 0.66 \pm 0.02$
- Significance of rejecting H₀: 36.8σ

 \rightarrow Proton spectrum breaks at the knee!

Does proton spectrum break at the knee?

• Parameters fitted around the knee (1-10 PeV)

- Significance of rejecting H_0 : 12.0 σ
- \rightarrow Proton spectrum breaks at the knee!

Only proton spectrum breaks at the knee?

- H_0 : yes, $q_p=1$
- H_1 : no, $q_p < 1$
- Significance of rejecting H₀
 - Paper: 41.8σ
 - 1-10 PeV: 6.3σ

$$m_{\Delta F} = \frac{\Delta M}{\Delta F} = (1 - q_p) \times m_{\geq He}$$

- proton proportion
 - Paper: $52.7\% \pm 1.2\% \le q_p \le 83.7\% \pm 0.04\%$
 - 1-10 PeV: 72.6% $\pm 4.5\% \le q_p \le 90.6\% \pm 1.5\%$

 \rightarrow Proton dominates the knee but it's not the only one whose spectrum breaks!

- A light cocktail
 - $L = F \frac{M}{\ln 56} \approx F_P + 0.655 F_{He}$

	all	TLM	Light	
Р	1	0	1	
Не	1	1.39	0.655	
CNO	1	2.64	0.345	
MgAlSi	1	3.30	0.181	
Fe	1	4.03	0	

• Hypothesis test: 5.2 σ

$$H_{0}: J(E) = J_{0} \left(\frac{E}{1 \, PeV}\right)^{\gamma} \left\{ f_{P} \left[1 + \left(\frac{E}{E_{P}}\right)^{s} \right]^{\Delta \gamma/s} + (1 - f_{P}) \left(1 - \frac{\ln 4}{\ln 56} \right) \right\}$$
$$H_{1}: J(E) = J_{0} \left(\frac{E}{1 \, PeV}\right)^{\gamma} \left\{ f_{P} \left[1 + \left(\frac{E}{E_{P}}\right)^{s} \right]^{\Delta \gamma/s} + (1 - f_{P}) \left(1 - \frac{\ln 4}{\ln 56} \right) \left[1 + \left(\frac{E}{nE_{P}}\right)^{s} \right]^{\Delta \gamma/s} \right\}$$

hhh@ihep.ac.cn

> n=2.06 \pm 0.09, rule out A-dep with 22 σ , agree with Z-dep

26

Features of the proton knee

- $E_p = 3.2 \pm 0.2 \text{ PeV}$
- Spectral index before the cutoff: -2.6559 ± 0.0009
- Change of spectral index: -0.79 ± 0.03
- Sharpness: 5.1 ± 0.5
- $f_p = 0.43 \pm 0.06$
- Light: $2.35 \pm 0.06 \times 10^{-12} / \text{GeV/m}^2/\text{sr/s}$
- (all: $3 \times 10^{-12} / \text{GeV/m}^2/\text{sr/s}$)

Discovery of an ankle-like structure due to Fe

• Break energy: 9.7 ± 0.2 PeV

Discovery of an ankle-like structure due to Fe

Discovery of an ankle-like structure due to Fe

• Break energy: 9.7 ± 0.2 PeV

Summary

- A calorimetric energy estimator is developed for the LHAASO-KM2A experiment
- The all-particle energy spectrum and <lnA> is measured with unprecedent precision
- The total logarithmic mass is introduced and a cocktail method is developed
- The CR knee is attributed to P and He with rigidity-dependent cutoff energy
- An ankle-like structure due to Fe at 9.2 PeV is discovered

CASA-MIA: 860 g/cm^2

Muons and electromagnetic particles measurement (N_e and N_μ)

Simulation

 $N_{\mu}^{corsika}$: the total muons number in CORSIKA within 200 m radius, scaled with the MD sampling N_{μ} : measured muons number, the total mouns number by counting over all the MDs within 200 m radius

Without counting the MDs in radius 40 m of the shower axis, the resolution is the best and the bias is almost zero.

Reconstruction of event energy and mass

 $N_{e\mu} = N_e + 2.8 N_{\mu}$

Energy reconstruction: model-dependence

TABLE S1. The fit para sition models.	ameters p_0 and p_1 for d	ifferent compo-
Model	p_0	p_1
Gaisser	2.799	0.992
Horandel	2.798	0.992
GST	2.802	0.992
GSF	2.797	0.992
TABLE S2. The fit parenergy hadronic interact	rameters p_0 and p_1 for ion models.	different high-
Model	p_0	p_1
Model QGSJETII-04	p_0 2.799	$\begin{array}{c} p_1 \\ \hline 0.992 \end{array}$
Model QGSJETII-04 EPOS-LHC	p_0 2.799 2.789	$ \begin{array}{r} p_1 \\ 0.992 \\ 0.992 \\ 0.992 \end{array} $

1.0

Reconstruction of <lnA>

