Particle Acceleration in Highly Magnetized Turbulent Plasmas

Luca Comisso

Department of Astronomy, Columbia University Department of Physics, Columbia University

in collaboration with: L Sironi, E Sobacchi, D Fiorillo, E Peretti, M Petropoulou, D Karavola, Z Davis, D Giannios, G Farrar, M Muzio, B Jiang, M Lemoine, V Bresci, D Groselj

Cosmic Rays in the Multi-Messenger Era APC Laboratory - Paris December, 2024

HST Optical **3800 light years** ALMA 230 GHz 1300 light years VLBA 43 GHz 0.25 light years

> EHT 230 GHz 0.0063 light years

What physical processes drive particle acceleration?

Daughton et al. '14

magnetized turbulence

- sheared velocity flows
- magnetospheric gaps
- magnetized rotators and others...

Magnetized environments (nonrelativistic vs. relativistic regimes: $\frac{v_A}{c} = \sqrt{\frac{\sigma}{1+\sigma}}$

 $\sigma = \frac{B^2}{4\pi\rho}$ $\sigma < 1$

$$\frac{b^2}{bc^2} \simeq \frac{4}{\beta} \frac{k_B T}{m_i c^2}$$

 $\sigma > 1$

Expected turbulence in large-scale (astrophysical) systems

Turbulence is likely to play a main role in the transfer of energy across scales

M87's Corona (with large uncertainties): $\begin{aligned} \ell_0 \gtrsim R_S &= 2GM/c^2 \sim 2 \times 10^{12} \,\mathrm{m} \\ \ell_{\mathrm{kin}} \sim \rho_p \sim 5 \times 10^3 \,\mathrm{m} \\ (\lambda_{\mathrm{mfp},p} \sim 10^{20} \,\mathrm{m}) \end{aligned}$

Estimates from EHT Collaboration 2019

Turbulent energy cascade in large-scale magnetized systems

Magnetic Reconnection

range

Inception of particle acceleration (particle injection) [Comisso & Sironi '18, '19]

Turbulent energy cascade in large-scale magnetized systems

injection of energy flux of energy Stochastic acceleration $1 \cup 1 \times 1 \times 1 \times 1$ [Bresci+, Comisso+, Lemoine, Nattila+, Zhdankin+, etc.] $l=2\pi/k_f$ energy-containing inertial range range

Magnetic Reconnection

Inception of particle acceleration (particle injection) [Comisso & Sironi '18, '19]

dissipation range

The evolution of the particle density $f_s(\mathbf{x}, \mathbf{p}, t)$ of species s in a collisionless plasma is described by the Vlasov equation

$$\frac{\partial f_s}{\partial t} + \frac{\boldsymbol{p}}{m_s \gamma_s} \cdot \nabla_{\boldsymbol{x}} f_s + \boldsymbol{F} \cdot \nabla_{\boldsymbol{p}} f_s = 0$$
where $\gamma_s^2 = 1 + \frac{|\boldsymbol{p}|^2}{m_s^2 c^2}$ and $\boldsymbol{F} = q_s \left(\boldsymbol{E} + \frac{\boldsymbol{p}}{\gamma_s m_s c} \times \boldsymbol{B} \right)$.
 $\boldsymbol{E}(\boldsymbol{x}, t)$ and $\boldsymbol{B}(\boldsymbol{x}, t)$ are determined from Maxwell's equation $\frac{\partial \boldsymbol{E}}{\partial t} - c \operatorname{curl} \boldsymbol{B} = -4\pi \boldsymbol{J}, \quad \operatorname{div} \boldsymbol{E} = 4\pi \rho,$

$$\frac{\partial \boldsymbol{B}}{\partial t} + c \operatorname{curl} \boldsymbol{E} = 0, \quad \operatorname{div} \boldsymbol{B} = 0,$$
where the source terms are computed by

$$\rho = \sum_{s} q_{s} \int_{\mathbb{R}^{3}} f_{s} d\boldsymbol{p}, \qquad \boldsymbol{J} = \sum_{s} \frac{q_{s}}{m_{s}} \int_{\mathbb{R}^{3}} f_{s} d\boldsymbol{p},$$

uations

Solution via particle-in-cell method

PIC code: TRISTAN-MP (Spitkovsky 2005)

Flying through turbulence along the mean magnetic field direction

PIC Turbulence

Magnetic reconnection occurring within the turbulent cascade

Formation of flux ropes within the turbulent domain (fully kinetic PIC turbulence)

Time evolution of the kinetic energy for some representative particles

Two phases of the acceleration process: (I) particle injection (2) stochastic acceleration

Stochastic particle acceleration: energy and magnetization dependence

[see also Wong at al. '20 for γ dependence]

• Mean rate of change of γ due to stocha

• PIC simulations give: $D_{\gamma} \sim 0.1 \sigma_{\text{tur}} \left(\frac{c}{\ell_c}\right)$

Nonresonant rather than gyro-resonant interactions (see also Lemoine '21, '22, Bresci+ '22)

stic acceleration:
$$\frac{d\langle\gamma\rangle}{dt} = \frac{1}{\gamma^2} \frac{\partial}{\partial\gamma} \left(\gamma^2 D_\gamma\right)$$

 $\gamma^2 \longrightarrow t_{acc} = \frac{\gamma^2}{D_\gamma}$

Localized high-energy neutrinos from the nearby active galaxy NGC 1068

Stochastic proton acceleration with cooling in the active galaxy NGC 1068

- Bethe-Heitler cooling limits proton energy to 20 TeV (needs sufficiently compact corona)

See also earlier model by Murase et al. '20

Predicted neutrino spectrum for the active galaxy NGC 1068

(FD telescopes: PRD 90 (2014), 122005 & 122005, updated ICRC 2023) (SD risetime: Phys. Rev. D96 (2017), 122003)

(AERA/radio: PRL & PRD 2023) (SD DNN: to appear in PRL & PRD)

The source energy cutoff is generally modeled (inspired by shock acceleration theory) as:

$$\phi(E) \propto E^{-s} \exp\left[\left(-E/E_{\rm cut}\right)\right]$$
, with $s \ge 2$

[e.g., Protheroe & Stanev 1999]

Often the spectrum is modeled (with no good) physical reason) as a broken exponential cutoff:

$$\phi(E) \propto E^{-s} \times \begin{cases} 1 & , E \leq E_{\text{cut}} \\ \exp\left[\left(-E/E_{\text{cut}}\right)\right], E > E_{\text{cut}} \end{cases}$$

Fit to UHECR spectrum and composition data return $s \leq 1$ (at odds with shocks)

Particle acceleration via magnetized turbulence: sharp energy cutoff

0.5

0

Relativistic Turbulence $(\delta B/B_0 \sim 1, \sigma = 16)$ ion-electron plasma

Comisso, Farrar, Muzio 2024

$$\frac{dN}{dE} = N_0 E^{-p} \operatorname{sech} \left[\left(E/E_{\text{cut}} \right)^2 \right]$$

Particle acceleration via magnetized turbulence: sharp energy cutoff

Relativistic Turbulence $(\delta B/B_0 \sim 1, \sigma = 16)$ ion-electron plasma

Comisso, Farrar, Muzio 2024

- 0.5

0

Particle acceleration via magnetized turbulence: rigidity-dependent energy cutoff

residence time within the accelerator:

$$t_{\rm esc} \simeq \frac{L^2}{\lambda_s c} \simeq \frac{L^2}{l_c c} \left(\frac{E_{\rm cut}}{E}\right)^{\delta} \propto E^{-\delta}$$

• flux of particles escaping the accelerator is given by

$$\phi(E) = \frac{dN}{dEdt} = \frac{1}{t_{esc}} \frac{dN}{dE} \propto E^{-s} \operatorname{sech} \left[\left(\frac{E}{E} \right)^{2} \right]$$
with $s = p \cdot \delta \sim 2.1$

$$\int \delta \sim 1/3 \quad \text{from PIC sim}$$

$$p \sim 2.4 \quad \text{magnetized (or explicit)}$$

ulations of highly $\tau \gg 1$) turbulence

Particle acceleration via magnetized turbulence: fitting to UHECR data

Comisso, Farrar, Muzio 2024

Particle acceleration via magnetized turbulence: back to the injection stage

Anisotropic pitch angle distributions develop in highly magnetized turbulence

Concurrent particle acceleration and pitch-angle anisotropy from reconnection

Broken power laws from reconnection (in both energy spectrum and pitch angle anisotropy) Comisso | APC 2024 23

Synchrotron radiation from the accelerated electrons

Synchrotron power radiated by one electron: $P_{\rm syn} = 2\sigma_T c (B^2/8\pi)\gamma^2 \sin^2 \alpha$

Typical frequency of synchrotron photons: $\nu \sim \gamma^2 \nu_L \sin \alpha \quad (\nu_L = eB/2\pi m_e c)$

(Hp: $\sin \alpha$ doesn't depend on γ)

Consequences for the Spectral Energy Distribution

For ultra-relativistic particles ($\gamma \gg 1$):

$$\begin{split} N_{\gamma} &\sim \gamma (dN/d\gamma) \propto \gamma^{1-p} \\ P_{\text{syn}} &= 2\sigma_T c (B^2/8\pi) \gamma^2 \sin^2 \alpha \propto \gamma^{2+m} \\ \nu F_{\nu} &\sim N_{\gamma} P_{\text{syn}} \propto \gamma^{3-p+m} \\ \nu &\sim \gamma^2 \nu_L \sin \alpha \propto \gamma^{2+m/2} \qquad (\nu_L = eB/2\pi m_e c) \\ \nu F_{\nu} &\propto \nu^{(3-p+m)/(2+m/2)} \quad \text{for } \nu_{\min \alpha} < \nu < \nu_{\text{iso}} \sim \gamma \\ \nu F_{\nu} &\propto \nu^{(3-p)/2} \qquad \text{for } \nu_{\text{iso}} < \nu < \nu_{\text{cut}} \sim \gamma_{\text{cu}}^2 \end{split}$$

(standard "textbook case" when m = 0)

Consequences for the Spectral Energy Distribution

Crab Nebulae SED (Zanin 2017)

- Relativistic turbulence ($\sigma \gg 1$) produces radio spectra with $s \sim 0.7$ for an extended fluctuation range
- Radio spectra with $s \sim 0.7$ are typical of PWNe (not just the Crab Nebula)

A few key takeaways

- I. Turbulence and magnetic reconnection commonly act in tandem
- 2. Particle acceleration from the thermal pool is effectively a two-stage process
- 3. Turbulence might account for neutrino production in AGN corona
- 4. Turbulence acceleration gives rise to $dN/dE \propto E^{-p} \operatorname{sech}[(E/ZeR_{cut})^2]$ with $R_{\rm cut} \sim B_{\rm rms} l_c$ and $s \sim [2 - 2.2]$ for $\sigma \gg 1$ (matches nicely UHECR data)
- 5. In magnetically dominated collisionless plasmas, pitch angle anisotropy is anticipated as the norm rather than the exception
- 6. Knowledge of both particle energy spectrum and pitch-angle anisotropy is needed to understand the radiation signatures emitted by energized particles

Power spectrum in collisionless plasma turbulence

Transition from MHD to kinetic scales:

Power spectra from PIC simulation

Comisso and Sironi 2022

Alexandrova et al. 2013

Intermittency at MHD and kinetic scales

From the measure of the scaling exponents $S_m(\mathscr{C}_{\perp}) = \langle |\Delta B_x(\mathbf{x}, \mathscr{C}_{\perp})|^m \rangle_{\mathbf{x}} \propto \mathscr{C}_{\perp}^{\zeta_m}$

the MHD range is more intermittent than the kinetic range (consistent with solar wind)

