

CR PROPAGATION & GMF: INSIGHTS FROM DIFFUSE g**-RAY EMISSION, TeV HALOS & CR ANISOTROPY**

Gwenael Giacinti (贾鸿宇)

Tsung-Dao Lee Institute & Shanghai Jiao Tong University

Kaci, GG & Semikoz, ApJ Lett (2024), arXiv:2407.20186 Kaci & GG, Submitted (2024), arXiv:2406.11015 Bian, GG & Reville, Submitted (2024), arXiv:2410.09634 GG & Semikoz, Submitted (2024), arXiv:2305.10251 GG, Koldobskiy & Semikoz, In prep. (2024) GG, Abounnasr, Neronov & Semikoz, PRD 106, 123029 (2022)

1 – Diffuse g**-ray emission**

The sky at GeV energies

(Fermi, 2008 – 2017)

Diffuse from AS-g **(400 TeV – 1 PeV)**

 $AS-y$ Collaboration, arXiv:2104.05181

Diffuse from LHAASO (10 TeV – 1 PeV)

→ **Emission in Galactic longitude does not follow target gas… => Stochasticity of CR injection?**

Diffuse gamma-ray emission at VHE from discrete CR sources

<u>Works by Samy Kaci</u>

Based on: Kaci & Giacinti,arXiv: 2406.11015, Submitted to JCAP

Our simulation

Discrete injection of cosmic rays

Isotropic and homogeneous diffusion

1) $GALPROP-like (d=1/3)$:

$$
D(E) = 10^{28} D_{28} \left(\frac{R}{3GV}\right)^{\delta} cm^2/s
$$

$$
D_{28} = 1.33 \times \frac{H}{kpc}
$$

2) Time-dependent (mimics self-confinement): 1/100 x D around sources for 10 kyr.

Cosmic-ray flux at Earth and B/C ratio

Clumps in the gamma-ray flux

Sky Maps and sources (case 1)

gamma-ray flux (eV⁻¹m

Sky Maps and sources (case 1)

Sky Maps and sources (case 2)

Sky Maps and sources (case 2)

Number of detectable sources

Number of SNRs detected / simulatio

Z. Cao et al., (2023)

14 3374 **21978 1779**

20

 >100 TeV

10

- Two diffusion regimes lead to different results concerning the detectability of sources.
- Homogeneous diffusion strongly limits the detectability of sources.
- Some parts of the space paramters can already be excluded.

25 oggate ozgaz

P O² PO

30

Morphology of the diffuse background

S. Kaci & G. Giacinti (2024)

- The diffusion mechanism does not really impact the diffuse background.
- At VHE there always are deviations from the expected morphology.
- Variations are more important for small numbers of SNRs.
- The morphology of the diffuse background can help to alleviate degeneracy between the the diffusion mechanisms.

Summary & Conclusion

- The gamma-ray flux can be quite clumpy.
- Case 1: CRs diffuse very fast and most sources quickly become invisible.
- The sky map morphology is very sensitive to the propagation mechanism.
- For standard (GALPROP) isotropic diffusion few sources are detectable.
- Assuming a short period of suppressed diffusion several sources appear.
- Inhomogeneous diffusion implies a PeVatron SNR rate ≤ 3.6 /kyr.

Impact of unresolved sources (PWNe)

S. Kaci, G. Giacinti, D. Semikoz (2024) ApJ Lett., Accepted, arXiv:2407.20186

- Use ATNF catalog and complete it.
	- Generate a VHE gamma-ray emission similar to that measured by KM2A for each source.
	- Constrain the gamma-ray emission to be below KM2A sensitivity.
- Use the same masks as LHAASO.
- contribution the • Compare οf unresolved sources to the total flux measured by KM2A.

Slide S. Kaci

Impact of unresolved sources (PWNe)

Slide S. Kaci

Impact of unresolved sources (PWNe)

S. Kaci, G. Giacinti, D. Semikoz (2024) ApJ Lett., Accepted, arXiv:2407.20186

- Unresolved pulsars almost do not contribute in the outer Galaxy.
	- Their contribution in the inner Galaxy depends on the cut in spindown power.
	- Their contribution negligeable **is** above 100TeV.
- Unresolved pulsars may account for at most \sim 50% of the diffuse flux under ~30TeV in the inner Galaxy..

Anisotropic CR propagation & Galactic diffuse g--**ray emission**

Giacinti & Semikoz, Submitted, arXiv:2305.10251

- \rightarrow Propagate CRs in "Jansson & Farrar" Galactic magnetic field model.
- → **Stochastic** PeV CR **injection** at SNe.

source distribution from Green, arXiv:1309.3072: $n(r) \propto (r/R_{\odot})^{0.7} \exp[-3.5(r-R_{\odot})/R_{\odot}]$

1 PeV CR density in the Gal. plane

G.Giacinti and D.Semikoz, Submitted, arXiv:2305.10251

log(CR density) in the Galactic plane

10% of all SNe are PeVatrons

PATCHY

1 PeV CR density in the Gal. plane

G.Giacinti and D.Semikoz, Submitted, arXiv:2305.10251

Proton flux at the knee

G.Giacinti and D.Semikoz, Submitted, arXiv:2305.10251

Zoom on our simulated Gal. plane

Giacinti, Koldobskiy & Semikoz, In prep. (2024)

Galactic plane survey ($|b| < 3^{\circ}$) at $E_y = 100$ TeV in the simulation:

Updated our model of CR propagation (dynamical now). Compare with LHAASO data => Infos on PeVatrons & GMF

2 – Extended g**-ray sources from past / current PeVatrons (p⁺ /e- , incl. TeV halos)**

398-1000 TeV ASy events

Giacinti, Abounnasr, Neronov & Semikoz, Phys. Rev. D 106, 123029 $\frac{12}{12}$ arXiv:2203.11052

 \rightarrow Propagate CRs in "Jansson & Farrar" Galactic B field model.

S1: (x, y, z) = (0.758 kpc, 8.67 kpc, 0) & t = 3 kyr.

S2: (1.60 kpc, 10.1 kpc, -250 pc) & t = 30 kyr.

 n_{1} ~ 0.33 cm⁻³ n_{2}° ~ 1.5 cm $^{-3}$

=> 7 ± 3 photons in the 398-1000 TeV range

Giacinti, Abounnasr, Neronov & Semikoz, Phys. Rev. D 106, 123029 $12 \sqrt{11/11}$ (2022), arXiv:2203.11052

TeV Halos: "Mirage" sources and large offsets

Works from Yiwei Bao

Bao, Giacinti, Liu, Zhang & Chen, arXiv:2407.02478 (Submitted) Bao, Liu, Giacinti, Zhang & Chen, arXiv:2407.02829 (Submitted)

Anisotropic diffusion in *isotropic* **turbulence**

PRL 108, 261101 (2012)

PHYSICAL REVIEW LETTERS

week ending 29 JUNE 2012

Filamentary Diffusion of Cosmic Rays on Small Scales

G. Giacinti, ¹ M. Kachelrieß, ¹ and D. V. Semikoz^{2,3}

1 PeV CRs in 3D Kolmogorov turbulence $(L_{\text{max}} = 150 \text{ pc},$ Plot size: 400 pc)

 => Expect intrinsically ASYMMETRIC emissions too.

Appearance of additional ("mirage") sources:

They may appear around astrophysical sources.

L_c = 40pc ; B_{turb} = 3 μG ; B_{reg} = 0 μG; Kolmogorov turbulence ; (8192 particles)

Appearance of additional ("mirage") sources:

The second source is a "**mirage**", where the magnetic field bends inwards /outwards, wrt/ observer.

(Prediction: X-ray emission at the mirage source fainter than that at the connecting structure.)

Large offsets may exist between real source and detected source

 B_{turb} ~ 1 μG ; B_{reg} = 0 μG ; L_c = 200 pc ; Kolmogorov turbulence ; (8192 particles)

May explain LHAASO observations

LHAASO Collaboration, ApJS 271, 25 (2024)

Many **extended sources** w/ **irregular shapes:**

Large offsets between sources and center

Table 4. 1LHAASO sources associated pulsars

No counterparts?

Summary:

- **→ Very extended hadronic sources** from **past PeVatrons** may exist.
- **→ "Mirage" sources** may appear **around (and far from) astrophysical sources.**
- **→ Large offsets** may exist between the **real source** and the **detected source**, due to B field structure in the ISM around the source.

3 – CR anisotropy

Work by Wenyi Bian (边稳懿)

Bian, Giacinti & Reville, Submitted, arXiv:2410.09634

HAWC + IceCube Collab., ApJ (2018) [arXiv:1812.05682]: **Large Scale Anisotropy (~0.1%) :**

 $F = F_0 (1 + \delta \cos \theta)$

SSA due to the local realization of the ISM turbulent field, within a CR MFP around Earth.

CR anisotropy down to 3 TeV

Bian, Giacinti & Reville, arXiv:2410.09634

Simulations now reach TeV energies

CR anisotropy down to 3 TeV

Bian, Giacinti & Reville, arXiv:2410.09634

Simulations now reach TeV energies

Amplitude SSA/LSA related to local δ B/B.

Power spectrum versus CR energy

Spherical harmonics:
$$
f(E, \mu, \phi) = \sum_{\ell=0}^{L_{max}} \sum_{m=-\ell}^{\ell} f_{\ell}^{m}(E) Y_{\ell}^{m}(\mu, \phi)
$$

Angular power spectrum:

$$
C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |f_{\ell}^m|^2
$$

Power spectrum versus CR energy

Excellent agreement with HAWC & IceCube measurements

Spherical harmonics

Spherical harmonics

Power along the direction of the dipole / B field

More **gyrotropic** at: (1) Low energies and (2) small l.

Conclusions

- →First numerical simulations **down to 3 TeV.**
- → New dependence of the angular power spectrum on **CR energy: Good fit to HAWC + IceCube measurements.**
- **→** Aligns well with the local B field direction.
- **→** More **gyrotropic** at: (1) Low energies and (2) small l.

Postdocs/PhD in Shanghai? gwenael.giacinti@sjtu.edu.cn