Ultrahigh Energy Cosmic Rays and Binary Neutron Star Mergers

Glennys R. Farrar, New York University APC Workshop, Paris, Dec. 13, 2024

arXiv: 2405.112004 [astro-ph.HE]

Observations & status of UHECRs: • Modern data is very constraining; no GZK violation; "usual suspects" sources --AGNs, long Gamma Ray Bursts (collapse of massive star) - all have problems

NEW PROPOSAL: UHECRs are produced in jets of binary neutron star mergers. This is first scenario which potentially satisfies all requirements • Can account for all UHECRs with a single mechanism. • Fascinating prediction: Highest energy UHECRs are r-process nuclei.

Plan of talk

Key conditions on UHECR sources

 Source number density and energy injection rate: Universal maximum rigidity (little source-to-source variation) • Anomalously high energy of "OMG" & Amaterasu (250 EeV & 220 EeV)

- Hillas criterion: CR escapes unless its Larmor radius is < source size Larmor radius controlled by rigidity, R=E/Q; $\Rightarrow R_{max,EV} \approx 3 \times 10^{-6} L_{cm} B_G$
 - $n_{S} \ge 10^{-3.5} \text{ Mpc}^{-3}$ and $dQ/dt = 6 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ for $E_{CR} > 10 \text{ EeV}$ Highest energy UHECRs are produced in TRANSIENTS (Amaterasu, OMG)

Constraints from Spectrum and Composition, I. • Unger, GF, Anchordoquí 2015: Take into account interactions in the environment surrounding the accelerator, not just with the CMB. Energy injection in UHECRs > 10 EeV: 6 x 10⁴⁴ erg Mpc⁻³ yr⁻¹ • Mixed composition; hard spectrum, depends on Rigidity: R = E/(Ze)

Composition

Constraints from Spectrum and Composition, II.

No known source class works!

 Rigidity ranges only a factor 2.5 around mean value of ~4 EV!

Constraints from Spectrum and Composition, III.

• Fitting Auger data using the magnetized turbulence spectral cutoff \Rightarrow good fit with source spectrum $E^{-2.1}$ sech[(E/E_{cut})²] (M. Muzio for Comisso, GF, MM 24)

Constraints from Arrival Directions

• Sources fairly abundant T. Bister and GRF, ApJ 2024

 HIGHEST ENERGY UHECRs are produced in TRANSIENTS (TA's Amaterasu, Fly's Eye OMG)
 M. Unger and GRF, ApJL 2024

Key conditions on UHECR sources

→ $R_{max,EV} \approx 3 \times 10^{-11} \Gamma_{jet} L_{km} B_{G}$ Source number density and energy injection rate: Highest energy UHECRs are produced in TRANSIENTS Universal maximum rigidity (little source-to-source variation) Anomalously high energy of "OMG" & Amaterasu (250 EeV & 220 EeV)

- Híllas criterion: CR escapes unless its Larmor radius is < source size
 - $n_{s} \ge 10^{-3.5} \text{ Mpc}^{-3}$ and $dQ/dt = 6 \times 10^{+4} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ for $E_{CR} > 10 \text{ EeV}$

Binary Neutron Star Mergers

 Universal Maximum Rigidity is natural • $M_{BNS} = (2.64 \pm 0.14) M_{\odot}$ Gravitationally-driven dynamo strong magnetic fields Energy injection rate: (obs = 6 x 10⁴⁴ erg Mpc⁻³yr⁻¹) • BNS rate $\Gamma_{\text{NSmerg}} = 10-1700 \text{ Gpc}^{-3} \text{ yr}^{-1}$ if $\Gamma_{\text{NSmerg}} \ge 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$ • Energy in jet alone $E_j \approx 10^{51.5} \text{ erg}$ (Kiuchi+23) Effective source density:

arXiv: 2405.112004 [astro-ph.HE]

Kiuchi+NatureAstron23

 \checkmark as long as magnetic smearing $\beta_{EGMF} > 0.04$

 $\beta_{\rm EGMF} \equiv B_{\rm EGMF}/{\rm nG}\sqrt{L_c/{\rm Mpc}}$

(expected range 0.1-1)

Very highest energy events explained! Kasen+17

 r-process nucleosynthesis takes place in BNS mergers r-nuclei can be accelerated in outflow \rightarrow E = R Z_{Te-Xe} = 4.5 EV x (52-54) = 240 EeV • Excellent agreement with OMG and Amaterasu! • $E_{OMG} \approx 250 \pm 70 \text{ EeV}^*$, $E_{Amaterasu} \approx 212 \pm 25 \text{ EeV}^*$

*with modern air fluorescence yield

Squeezed dynamical

 $v \approx 0.2c-0.3c$

Disk wind

 $v \leq 0.1c$

**higher if a proton

Where are the UHECRs accelerated?

 Highly magnetized turbulent flow: • B~r-3/2 or slower using magnetic energy Disk wind v ≲ 0.1c conservation (n.b., CR feedback increases B). • dE_{accel}/dt~ E/7_{accel}~ 0.016 ZB (CFM 24) • $dE_{synch}/dt \sim 4/9 (\gamma \beta)^2 B^2 c Z^4/A^2$ • Simple Mathematica estimate of r such that $dE_{accel}/dt > dE_{synch}/dt$: • For initial B=10^{15.5}G at r = 10 km, $R_{max} = 3.5 EV$ (reached at r = 10¹⁶ cm)

Squeezed dynamical $v \approx 0.2c - 0.3c$

Tidal dynamical v ≈ 0.2c–0.3c

 1×10^{10}

Summary: Source candidates & key constraints

	Powerful AGN	long GRBs	TDEs	Accretion Shocks	BNS mergers
n _S ≥ 10-3.5 Mpc-3	[*]	[*]	?	?	
UHECR energy ínjection	~	X	?	?	[1]
Ordínary galaxy	×	×		[*]	
Universal R _{max}	*	*	*		
Highest energy events?	*	*			

All can satisfy Hillas size > Larmor radius

Future test of BNS-merger origin: ≈20 PeV neutrinos coincident with GW from BNS mergers

- UHECRs interact while escaping the source producing v's with E_v ≈ 20 PeV
 ⇒ Every ≈ 20 PeV v should be accompanied by a gravitational wave from a NS merger.
 CE+ET+IC-Gen2 x few yrs: very promising.
- GW170817 should have been accompanied by 20
 PeV neutrinos. Estimated fluence for aligned jet
 ≈ 0.15 GeV cm⁻² per flavor (preliminary).
 Detector sensitivity not adequate.

- Uniquely, so far, BNS-merger mechanism can satisfy all basic requirements:
 - Universal Maximum Rigidity potentially explained.
 - Can account for all CRs (dependent on BNS merger rate & power in CRs)
- Highest energy events are r-process nuclei Should see coincidences between ≈20 PeV neutrinos and GWs from BNS-merger Qualitatively it works well - next must look harder at details...

Summary

New suggestion: UHECRs are produced in binary NS mergers.

