Extensive air shower predictions: sufficiently constrained by accelerator data?

> Sergey Ostapchenko Hamburg University

Cosmic Rays and Neuronos in the Multi-Messenge Era

Paris_Brecember 19-18-2024

arXiv: 2401.06202; 2403.16106; 2404.02085; 2409.05501

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

hard scattering involves one projectile & one target parton

@ ▶ 《 ⊇ ▶ 《 ⊒

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\rightarrow2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

Main motivation for QGSJET-III

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2 \to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2 \to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

What kind of physics is behind this cutoff?

- for $Q_0 \sim$ few GeV, soft physics irrelevant
 - \Rightarrow a perturbative mechanism missing

Main motivation for QGSJET-III

Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2 \to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem: $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$ explodes at small p_t

• \Rightarrow low p_t cutoff (Q_0) required (technical parameter?)

• choice of Q_0 impacts strongly the predictions (e.g. $\sigma_{pp}^{\text{tot/inel}}$)

What kind of physics is behind this cutoff?

- for $Q_0 \sim$ few GeV, soft physics irrelevant
 - ullet \Rightarrow a perturbative mechanism missing

• are MC predictions trustworthy, without such a mechanism?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dynamical higher twist effects in hadronic scattering

Hint: collinear factorization of pQCD valid at leading twist level

- perhaps higher twist effects do the job?
 - come into play at relatively small p_t [suppressed as $1/p_t^n$]

Dynamical higher twist effects in hadronic scattering

Hint: collinear factorization of pQCD valid at leading twist level

- perhaps higher twist effects do the job?
 - come into play at relatively small p_t [suppressed as $1/p_t^n$]

HT effects in $\gamma^* A/pA$: coherent multiple scattering on 'soft' gluons [Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

 scattering involves any number of 'soft' gluon pairs (⇒ multiparton correlators)

[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]

Dynamical higher twist effects in hadronic scattering

NB: only moderate HT corrections allowed by HERA data

• HT corrections important at low Q^2

• \Rightarrow too strong corrections at tension with Q^2 -evolution of F_2

Dynamical higher twist effects in hadronic scattering

NB: only moderate HT corrections allowed by HERA data

π - over ρ -exchange dominance $\Rightarrow \sim 20\%$ increase of N_{μ}

• why so?! • isospin symmetry: $\rho^+: \rho^-: \rho^0 = 1:1:1$ • $\Rightarrow \langle E_{\pi^{\pm}} \rangle: \langle E_{\pi^0} \rangle = 2:1$ in central production $(\rho^{\pm} \rightarrow \pi^{\pm}\pi^0, \rho^0 \rightarrow \pi^{+}\pi^{-})$ $\sum_{\mu=1}^{1.4} \int_{\mu=1}^{\mu=1} \int_{\mu=1}^{$

π - over ρ -exchange dominance $\Rightarrow \sim 20\%$ increase of N_{μ}

- why so?!
- isospin symmetry: $\rho^+:\rho^-:\rho^0=1:1:1$
- $\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 2 : 1$ in central production $(\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-})$
- \Rightarrow central production of ρ mesons has no impact on N_{μ} (same $\langle E_{\pi^{\pm}} \rangle / \langle E_{\pi^{0}} \rangle$ as for direct pion production)

π - over ρ -exchange dominance $\Rightarrow \sim 20\%$ increase of N_{μ}

- why so?!
- isospin symmetry: $\rho^+:\rho^-:\rho^0=1:1:1$
- $\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 2 : 1$ in central production $(\rho^{\pm} \rightarrow \pi^{\pm}\pi^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-})$
- \Rightarrow central production of ρ mesons has $\overset{\aleph}{z^{\pm}}$ in no impact on N_{μ} (same $\langle E_{\pi^{\pm}} \rangle / \langle E_{\pi^{0}} \rangle$ as for direct pion production)

 π -exchange process in π^+A : only ρ^+ and ρ^0 produced forward

•
$$\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 3 : 1$$

$$\pi^{+} \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{\underline{u}}{d} | \begin{array}{c} \mu \\ \overline{d} \\ \pi^{0} \end{array} \rho^{+} \qquad \pi^{+} \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{\underline{u}}{d} | \begin{array}{c} \mu \\ \overline{u} \\ \overline{u} \\ \pi^{+} \end{array} \rho^{0} |$$

π - over ρ -exchange dominance $\Rightarrow \sim 20\%$ increase of N_{μ}

- why so?!
- isospin symmetry: $\rho^+:\rho^-:\rho^0=1:1:1$
- $\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 2 : 1$ in central production $(\rho^{\pm} \rightarrow \pi^{\pm}\pi^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-})$
- \Rightarrow central production of ρ mesons has $\overset{\aleph}{z^{\pm}}$ in no impact on N_{μ} (same $\langle E_{\pi^{\pm}} \rangle / \langle E_{\pi^{0}} \rangle$ as for direct pion production)

 π -exchange process in π^+A : only ho^+ and ho^0 produced forward

•
$$\Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^{0}} \rangle = 3 : 1$$

 ⇒ less energy channeled into e/m cascades!

$$\pi^{+} \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{\underline{u}}{d} \rho^{+} \qquad \pi^{+} \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{\underline{u}}{d} \rho^{0}$$
$$\pi^{0} \qquad \pi^{+}$$

 $\pi\text{-exchange process in } \pi^+A: \text{ only } \rho^+ \text{ and } \rho^0 \text{ produced forward}$ $\bullet \Rightarrow \langle E_{\pi^\pm} \rangle: \langle E_{\pi^0} \rangle = 3:1 \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{\left| \frac{d}{d} \right|} \rho^+ \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{\left| \frac{u}{u} \right|} \rho^0$ $\bullet \Rightarrow \text{ less energy channeled} \text{ into e/m cascades!} \qquad \pi^0 \qquad \pi^+$

Energy-dependence: driven by absorptive corrections to the process

 high x production of ρ in π[±]p (π[±]A) or of neutrons in pp: only without additional inelastic rescatterings

< □ > < □ >

 $\pi\text{-exchange process in } \pi^+A: \text{ only } \rho^+ \text{ and } \rho^0 \text{ produced forward}$ $\bullet \Rightarrow \langle E_{\pi^\pm} \rangle : \langle E_{\pi^0} \rangle = 3:1 \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{|d|} \frac{u}{d} \rho^+ \qquad \pi^+ \frac{\underline{u} \quad \underline{u}}{\overline{d}} \frac{u}{|u|} \frac{u}{u} \rho^0$ $\bullet \Rightarrow \text{ less energy channeled} \text{ into e/m cascades!} \qquad \pi^0 \qquad \pi^+$

Energy-dependence: driven by absorptive corrections to the process

- high x production of ρ in π[±]p (π[±]A) or of neutrons in pp: only without additional inelastic rescatterings
- now can be tested in pp → nX thanks to LHCf data [backup slides]

Results for extensive air showers [SO, arXiv: 2403.16106]

Results for extensive air showers [SO, arXiv: 2403.16106]

• up to $\simeq 10 \text{ g/cm}^2$ shift of $X_{\rm max}$ wrt QGSJET-II-04

• up to
$$\simeq 5\%$$
 change of N_{μ}

What is the reason for the stability of the predictions?

- the model sufficiently constrained by LHC data?
- or a mere consequence of a particular model approach?

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^-}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

Kinematic range for hadron production, relevant for N_{μ} predictions

 $\bullet\,$ let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^-}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

• abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$

回 と く ヨ と く ヨ と

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only: $_{+}$

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^-}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^{\perp}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Using an ansatz: $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$

$$N_{p}^{\mu}(E_{0}) \propto E_{0}^{\alpha_{\mu}} \int_{x_{\min}}^{1} dx \, x^{\alpha_{\mu}-1-\Delta} (1-x)^{\beta} \overset{\#}{\underset{x}{\overset{\mu}{=}}} \overset{10^{2}}{\underset{10^{-1}}{\overset{\mu}{\underset{x}{\overset{\mu}{=}}}} \overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{x}{\overset{\mu}{=}}}} \overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{10^{-1}}}}} \overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}{\overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{\mu}{\underset{10^{-1}}} \overset{$$

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^{\perp}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Using an ansatz: $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$

$$N_p^{\mu}(E_0) \propto E_0^{\alpha_{\mu}} \int_{x_{\min}}^1 dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \underbrace{\mathbb{I}}_{x_{\min}}^{\mathcal{B}}$$

• largest contribution from $\langle x_{\pi} \rangle \simeq \frac{\alpha_{\mu} - \Delta}{\alpha_{\mu} + \beta - 1 - \Delta} \sim 0.1$ $(\Delta \simeq 0.4, \ \alpha_{\mu} \simeq 0.9, \ \beta \simeq 4.5)$

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\pi^-}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Using an ansatz: $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$

$$N_p^{\mu}(E_0) \propto E_0^{\alpha_{\mu}} \int_{x_{\min}}^1 dx \, x^{\alpha_{\mu}-1-\Delta} \, (1-x)^{\beta} \quad \text{for all } x \in \mathbb{R}^{n}$$

- largest contribution from $\langle x_{\pi} \rangle \simeq \frac{\alpha_{\mu} - \Delta}{\alpha_{\mu} + \beta - 1 - \Delta} \sim 0.1$ $(\Delta \simeq 0.4, \ \alpha_{\mu} \simeq 0.9, \ \beta \simeq 4.5)$
- relevant (x_π) for π-air interactions follows similarly

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only: $dN^{\pi^{\pm}}$ (*E*₀ *x*)

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\mathrm{air}}^{\mu}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \rightarrow 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Accounting for all 'stable' hadrons (π^{\pm} , kaons, (anti)nucleons)

• relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_{\mu}} \rangle = \sum_{h=\text{stable}} \int dx_E \, x_E^{\alpha_{\mu}} \, \frac{dN_{\pi^{\pm} \text{air}}^n(E_0, x_E)}{dx_E}$$

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only: $dN^{\pi^{\pm}}$ (*E*₀ *x*)

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\operatorname{air}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Accounting for all 'stable' hadrons (π^{\pm} , kaons, (anti)nucleons)

• relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_{\mu}} \rangle = \sum_{h=\text{stable}} \int dx_E \ x_E^{\alpha_{\mu}} \ \frac{dN_{\pi^{\pm}\text{air}}^n(E_0, x_E)}{dx_E}$$

• can be well approximated by $\sum_{h=\text{stable}} \langle x_E^h \rangle$ $(\alpha_\mu \to 1)$

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only: $m^{\pi^{\pm}}$ (r

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\operatorname{air}}^{\kappa}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \to 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Accounting for all 'stable' hadrons (π^{\pm} , kaons, (anti)nucleons)

relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_{\mu}} \rangle = \sum_{h=\text{stable}} \int dx_E \ x_E^{\alpha_{\mu}} \ \frac{dN_{\pi\pm \text{air}}^n(E_0, x_E)}{dx_E}$$

- can be well approximated by $\sum_{h=\text{stable}} \langle x_E^h \rangle$ $(\alpha_\mu \to 1)$
- $\Rightarrow N^{\mu}$ is governed by the total energy fraction taken by all 'stable' hadrons (not by the multiplicity)

Kinematic range for hadron production, relevant for N_{μ} predictions

• let us restrict ourselves with pion production only: $dN^{\pi^{\pm}}$ (E₀ x)

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\operatorname{air}}^{\mu}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at $x \to 0$: $dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)/dx \propto x^{-1-\Delta}$
- large N_{μ} yields at $x \rightarrow 1$: $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Accounting for all 'stable' hadrons (π^{\pm} , kaons, (anti)nucleons)

• relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_{\mu}} \rangle = \sum_{h=\text{stable}} \int dx_E \ x_E^{\alpha_{\mu}} \ \frac{dN_n^n \pm_{\text{air}}(E_0, x_E)}{dx_E}$$

- can be well approximated by $\sum_{h=\text{stable}} \langle x_E^h \rangle$ $(\alpha_\mu \to 1)$
- $\Rightarrow N^{\mu}$ is governed by the total energy fraction taken by all 'stable' hadrons (not by the multiplicity)

• NB:
$$\sum_{h=\text{stable}} \langle x_E^h \rangle \simeq 1 - \langle x_E^{\pi^0} \rangle$$

How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ (decrease $\langle x_E^{\pi^0} \rangle$)?

• change the energy dependence of the pion exchange process \Rightarrow larger forward yield of ρ -mesons \Rightarrow higher $\langle E_{\pi^{\pm}} \rangle / \langle E_{\pi^{0}} \rangle$

How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ (decrease $\langle x_E^{\pi^0} \rangle$)?

- change the energy dependence of the pion exchange process \Rightarrow larger forward yield of ρ -mesons \Rightarrow higher $\langle E_{\pi^{\pm}} \rangle / \langle E_{\pi^{0}} \rangle$
- change the model calibration (e.g. based on NA61 data): more kaons & (anti)nucleons

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Neglecting absorptive corrections to the π -exchange process: larger forward production of ρ -mesons at higher energies

In such a case: large contribution of pion elastic scattering

•
$$\sigma_{\pi-\text{air}}^{\text{el}} \rightarrow \frac{1}{2} \sigma_{\pi-\text{air}}^{\text{tot}}$$
 at $E_0 \rightarrow \infty$
Model uncertainties for predicted N_{μ} [SO & Sigl, arXiv: 2404.02085]

Neglecting absorptive corrections to the π -exchange process: larger forward production of ρ -mesons at higher energies

In such a case: large contribution of pion elastic scattering

• $\sigma_{\pi-\mathrm{air}}^{\mathrm{el}} \rightarrow \frac{1}{2} \sigma_{\pi-\mathrm{air}}^{\mathrm{tot}}$ at $E_0 \rightarrow \infty$

02 04

 $\pi^{*} + N \rightarrow \rho^{0} (10^{6} \text{ GeV/c})$

OGSJET-III

no absorption

pion exchange (QGSJET-III)

0.6

0.8

- \Rightarrow scarce hadron production!
- \Rightarrow decrease of N_{μ} (instead of an enhancement)

Model uncertainties for predicted N_{μ} [SO & Sigl, arXiv: 2404.02085]

• $\simeq 40\%$ more kaons & $\simeq 60\%$ more (anti)protons required

 NB: such enhancements create a tension with other data on kaon & (anti)proton production in πp & pp interactions

Relative changes of the calculated N_{μ} : < 10%

- why?
- small impact of the the considered enhancements on $\sum_{h=\text{stable}} \langle x_E^h \rangle$ (changes mostly affect central hadron production)

<ロ> (四) (四) (四) (四) (四)

Relative changes of the calculated N_{μ} : < 10%

- why?
- small impact of the the considered enhancements on $\sum_{h=\text{stable}} \langle x_E^h \rangle$ (changes mostly affect central hadron production)
- \Rightarrow accelerator data allow one to enhance N_{μ} by up to $\sim 10\%$

Predictions for EAS maximum depth X_{max} : 3 main 'switches'

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity for *p*-air interactions $(K_{p-\text{air}}^{\text{inel}})$

Predictions for EAS maximum depth X_{max} : 3 main 'switches'

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity for *p*-air interactions $(K_{p-\text{air}}^{\text{inel}})$

Inelastic cross section: well constrained by LHC data

- < 3% difference for σ_{pp}^{inel} between ATLAS & TOTEM (79.5±1.80 & 77.41±2.92 mb)
- even smaller difference for pA: $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$

Predictions for EAS maximum depth X_{max}: 3 main 'switches'

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity for *p*-air interactions $(K_{p-\text{air}}^{\text{inel}})$

Inelastic cross section: well constrained by LHC data

- < 3% difference for σ_{pp}^{inel} between ATLAS & TOTEM (79.5 ± 1.80 & 77.41 ± 2.92 mb)
- even smaller difference for *pA*: $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$
- NB: 1% change of $\sigma_{p-\text{air}}^{\text{inel}} \Rightarrow \Delta X_{\text{max}} \simeq 1 \text{ g/cm}^2 \text{ at } 10^{19} \text{ eV}$

Predictions for EAS maximum depth X_{max} : 3 main 'switches'

- inelastic proton-air cross section (σ_{p-air}^{inel})
- inelastic diffraction rate $(\sigma_{p-air}^{diffr}/\sigma_{p-air}^{inel})$
- inelasticity for *p*-air interactions $(K_{p-\text{air}}^{\text{inel}})$

Inelastic cross section: well constrained by LHC data

• < 3% difference for σ_{pp}^{inel} between ATLAS & TOTEM (79.5 ± 1.80 & 77.41 ± 2.92 mb)

• even smaller difference for
$$pA$$
:
 $\sigma_{pp}^{\text{inel}} \propto R_p^2$, $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$

• NB: 1% change of
$$\sigma_{p-\text{air}}^{\text{inel}} \Rightarrow \Delta X_{\text{max}} \simeq 1 \text{ g/cm}^2 \text{ at } 10^{19} \text{ eV}$$

$$R_{pp} = 2 R_p$$

$$\mathbf{R}_{pA} = \mathbf{R}_{p} + \mathbf{R}_{A}$$

Diffraction uncertainties: $\Delta X_{\text{max}} \lesssim 5 \text{ g/cm}^2$ [SO, PRD89 (2014) 074009]

The only significant freedom left: inelasticity for p - air

• higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{p-\text{air}}^{\text{inel}}$

/□ ▶ < 三 ▶ <

The only significant freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{n-\text{air}}^{\text{inel}}$
- \Rightarrow one needs softer spectra for secondary hadrons $(\pi, K...)$
 - ideally: Feynman scaling for forward spectra

The only significant freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{p-\mathrm{air}}^{\mathrm{inel}}$
- \Rightarrow one needs softer spectra for secondary hadrons $(\pi, K...)$

• ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution $(x^{-\alpha_q})$ [SO, J.Phys. G29 (2003) 831]

The only significant freedom left: inelasticity for p - air

- higher energy \Rightarrow higher multiple scattering \Rightarrow higher $K_{p-\text{air}}^{\text{inel}}$
- \Rightarrow one needs softer spectra for secondary hadrons $(\pi, K...)$
 - ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution $(x^{-\alpha_q})$ [SO, J.Phys. G29 (2003) 831]

- $\alpha_q \rightarrow 1$: approximate Feynman scaling for forward spectra
- NB: may not work for semihard scattering (minijet production)

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 シッペ ●

 NB: higher discrimination power expected from combined studies with central & forward detectors (e.g. LHCf & ATLAS) [SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]

Choice of string end distribution $(x^{-\alpha_q})$: impact on X_{max}

• up to $\simeq 10~{
m g/cm^2}$ shift of $X_{
m max}$

• why a moderate effect on particle production & X_{max}?

Choice of string end distribution $(x^{-\alpha_q})$: impact on X_{max}

• up to $\simeq 10~{
m g/cm^2}$ shift of $X_{
m max}$

- why a moderate effect on particle production & X_{max}?
- 'warranted' scaling violation due to semihard scattering (energy fraction taken by perturbatively generated partons ⇒ lower bound on K^{inel}_{p-air})
 ¹⁰ [see backup slides]

Exotic: modification of the hadronization by 'collective effects'

 assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest p_t partons

Exotic: modification of the hadronization by 'collective effects'

- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest p_t partons
- $\alpha_q \rightarrow 1$ limit: short strings concentrated at central rapidities in c.m. frame

• \Rightarrow small impact on $K_{p-\mathrm{air}}^{\mathrm{inel}}$

00000000

eeeeee

Exotic: modification of the hadronization by 'collective effects'

- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest p_t partons
- $\alpha_q \rightarrow 1$ limit: short strings concentrated at central rapidities in c.m. frame
 - \Rightarrow small impact on $K_{p-\text{air}}^{\text{inel}}$
- rather nonphysical: collective effects may be strong in central (small b) collisions only

Exotic: modification of the hadronization by 'collective effects'

- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest p_t partons
- $\alpha_q \rightarrow 1$ limit: short strings concentrated at central rapidities in c.m. frame
 - \Rightarrow small impact on $K_{p-\mathrm{air}}^{\mathrm{inel}}$
- rather nonphysical: collective effects may be strong in central (small b) collisions only
 - ⇒ should not have large impact on the average parton production pattern (dominated by peripheral collisions)

- energy-dependence of K^{inel}_{p-air} reduced drastically
 - $\alpha_q = 0.9$: $K_{p-\mathrm{air}}^\mathrm{inel}$ doesn't depend on energy above 1 PeV

Impact of string end distribution on $K_{p-\text{air}}^{\text{inel}}$ (no parton cascades)

- energy-dependence of K^{inel}_{p-air} reduced drastically
 - $\alpha_q = 0.9$: $K_{p-\mathrm{air}}^{\mathrm{inel}}$ doesn't depend on energy above 1 PeV

 ⇒ (mini)jet production has no impact on the inelasticity in the
 α_q → 1 limit

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Impact of string end distribution on X_{max} (no parton cascades)

- up to $\simeq 30 \text{ g/cm}^2$ shift of X_{max} ($\alpha_q = 0.9$)
- can be refuted/constrained by LHC data?

Image: A mathematical states of the state

The limit $\alpha_a \rightarrow 1$: disfavored by LHCf data on forward neutrons

• $\alpha_q \rightarrow 1$: forward neutron yield exceeds the measured one

The limit $\alpha_q \rightarrow 1$: disfavored by LHCf data on forward neutrons

Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II) • up to $\simeq 10 \text{ g/cm}^2$ shift of X_{max} and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- ${\rm \bullet}\,$ More exotic: 'collective effects' $\Rightarrow \Delta X_{max}$ up to $\simeq 30~{\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}

Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II) • up to $\simeq 10 \text{ g/cm}^2$ shift of X_{max} and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- ${\rm \bullet}\,$ More exotic: 'collective effects' $\Rightarrow \Delta X_{max}$ up to $\simeq 30~{\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}

Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
 - up to $\simeq 10~{\rm g/cm^2}$ shift of $X_{\rm max}$ and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- ${\, \bullet \,}$ More exotic: 'collective effects' $\Rightarrow \Delta X_{max}$ up to $\simeq 30~{\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}
Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II) • up to $\simeq 10 \text{ g/cm}^2$ shift of X_{max} and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- ${\, \bullet \,}$ More exotic: 'collective effects' $\Rightarrow \Delta X_{max}$ up to $\simeq 30~{\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}

Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II) • up to $\simeq 10 \text{ g/cm}^2$ shift of X_{max} and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- ${\, \bullet \,}$ More exotic: 'collective effects' $\Rightarrow \Delta X_{max}$ up to $\simeq 30~{\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}

Outlook

- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
 - tames the low p_t rise of (mini)jet rates
 - ${\, \bullet \, }$ reduces the model dependence on the low p_t cutoff Q_0
- Technical improvement: treatment of π -exchange process
 - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II) • up to $\simeq 10 \text{ g/cm}^2$ shift of X_{max} and up to $\simeq 5\%$ change of N_{μ}
- Model uncertainties for N_{μ} : only up to $\sim 10\%$ enhancement
- Model uncertainties for X_{max} : only up to $\sim 10 \text{ g/cm}^2$ shift (using the standard interaction treatment)
- More exotic: 'collective effects' $\Rightarrow \Delta X_{\rm max}$ up to $\simeq 30 {\rm g/cm^2}$
 - disfavored by LHCf data & by PAO measurements of X_{\max}^{μ}

Extra slides follow

◆□→ ◆□→ ◆三→ ◆三→ 三 ・ のへぐ

(1) Technical improvement: π -exchange process

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

(1) Technical improvement: π -exchange process

And moving over 6 energy decades to 13 TeV c.m.

 $\mathcal{O} \land \mathcal{O}$

- high energies ⇒ quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

個 と く ヨ と く ヨ と

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ∼ 0) in c.m.s.
 - small impact on forward spectra

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ~ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller p_t, higher x)
 - ⇒ most important are first ('softest') partons in the cascade

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ~ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller p_t, higher x)
 - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at Q_0^2 -scale with 'soft' gluons? $(f_g(x, Q_0^2) \propto x^{-1-\Delta_g}, \Delta_g \simeq 0.2)$

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region (y ~ 0) in c.m.s.
 - small impact on forward spectra
- but: hardest scattering preceeded by parton cascade (smaller p_t, higher x)
 - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at Q_0^2 -scale with 'soft' gluons? ($f_g(x, Q_0^2) \propto x^{-1-\Delta_g}$, $\Delta_g \simeq 0.2$)
- no: x-distribution of those gluons is weighted with the hard scattering!

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

• but the probability for hard scattering: convolution with σ^{hard}_{gg}

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \,\mathbf{\sigma}_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

• $\sigma^{\rm hard}_{gg}(\hat{s},Q^2_0) \propto \hat{s}^{\Delta_{
m hard}}$ – contribution of the DGLAP 'ladder'

- high energies \Rightarrow quick rise of (mini)jet production
 - small $\alpha_s(p_t^2)$ compensated by infrared and collinear logs (arising from parton cascading): $\ln(x_i/x_{i+1})$, $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

 \bullet but the probability for hard scattering: convolution with σ^{hard}_{gg}

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \,\mathbf{\sigma}_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

- $\sigma^{\rm hard}_{gg}(\hat{s},Q^2_0) \propto \hat{s}^{\Delta_{
 m hard}}$ contribution of the DGLAP 'ladder'
- \Rightarrow gluons which succeed to interact have large x: $\propto x^{\Delta_{hard} \Delta_g 1}$ (iff $\Delta_{hard} \simeq 0.3 > \Delta_g$)
 - i.e., first partons in a perturbative cascade are 'valence-like' (independently on our assumptions for string end distribution)

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

• any change of the primary interaction ($\sigma_{p-\text{air}}^{\text{inel}}$, $\sigma_{p-\text{air}}^{\text{diffr}}$, $K_{p-\text{air}}^{\text{inel}}$) impacts only the initial stage of EAS development

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction (σ^{inel}_{p-air}, σ^{diffr}_{p-air}, K^{inel}_{p-air}) impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)

イロン イヨン イヨン ・

Э

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction (σ^{inel}_{p-air}, σ^{diffr}_{p-air}, K^{inel}_{p-air}) impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- \Rightarrow same effect on X_{max} & X_{max}^{μ}

() < </p>

Э

Changing X_{max} implies equal or larger changes for X_{max}^{μ}

- any change of the primary interaction $(\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diffr}}, K_{p-\text{air}}^{\text{inel}})$ impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- \Rightarrow same effect on X_{max} & X_{max}^{μ}
- additionally: the corresponding change of physics impacts π-air interactions at all the steps of the cascade development
 - \Rightarrow cumulative effect on X^{μ}_{\max}

・ロン ・回と ・ヨン・