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Sergey Ostapchenko




Main motivation for QGSJET-III
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Jet production in MC generators: collinear factorization of pQCD
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@ hard scattering involves one projectile & one target parton

o problem: doZ2/dp¢ 0 1/pf = explodes at small p

@ = low py cutoff (Qo) required (technical parameter?)

o choice of Qo impacts strongly the predictions (e.g. oy ™)

What kind of physics is behind this cutoff?

@ for Qg ~ few GeV, soft physics irrelevant

@ = a perturbative mechanism missing

@ are MC predictions trustworthy, without such a mechanism?
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[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)




Dynamical higher twist effects in hadronic scattering

Hint: collinear factorization of pQCD valid at leading twist level
@ perhaps higher twist effects do the job?

s come into play at relatively small p; [suppressed as 1/pf]

HT effects in y*A/pA: coherent multiple scattering on 'soft’ gluons
[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)

Extrapolation to hadron-proton & light nuclei
[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]




NB: only moderate HT corrections allowed by HERA data
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@ = too strong corrections at tension with Q%evolution of F»
@ known fact: Q?-evolution of F» is well-described by DGLAP
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Dynamical higher twist effects in hadronic scattering
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Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

TE over p-exchange dominance = ~ 20% increase of N,

@ why so?!
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TE over p-exchange dominance = ~ 20% increase of N,

@ why so?!

p-induced EAS

@ isospin symmetry: pt:p :p=1:1:1
o = (Ep):(Ep)=2:1in central
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Ttexchange process in TTTA: only pJr and p0 produced forward
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o = (Bt {En) = T “T- =
@ = less energy channeled d ’: d a ’F
T[+

into e/m cascades!

Energy-dependence: driven by absorptive corrections to the process

n .,

o high X production of p in Te5p (TtFA) O B
or of neutrons in pp: only without ™ iﬂ+
additional inelastic rescatterings i

@ now can be tested in pp— nX :P
thanks to LHCf data [backup slides] p i




Results for extensive air showers [so, arxiv: 2403.16106]

Rather small changes for Xmax and Ny (wrt QGSJET-11-04)
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Results for extensive air showers [so, arxiv: 2403.16106]

Rather small changes for Xmax and N, (wrt QGSJET-11-04)
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o up to ~ 10 g/cm? shift of Xmax wrt QGSJET-11-04
@ up to =~ 5% change of Ny
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What is the reason for the stability of the predictions?

@ the model sufficiently constrained by LHC data?

@ or a mere consequence of a particular model approach?
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
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Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
d air EOX
NE(Eo) o ax M5 N, ()
@ abundant production at X — O: de air(Eo0,X)/dx O x~ 174
o large Ny yields at x — 1: Nk, (xEp) O (xEp)“

Using an ansatz: ngfair(Eo,X)/dXD x 1A (1-x)P

p+¥N o

Xe dn/dx.

Nb(Eo) 0 Eg* fr, dx =178 (1 x)P

10°2[. —— QGSIETI
SIBYLL-2.3
gf e approximation
) LT 1;
10° 107 107" 1
X,




Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
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Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:
d air EO’
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Accounting for all 'stable’ hadrons (Tt5, kaons, (anti)nucleons)

@ relevant quantity for EAS muon content
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Kinematic range for hadron production, relevant for N, predictions
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves W|th pion production only:
d all’
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@ abundant productlon at x—0: de air(Eo0,X)/dx O x~ 174

o large N, yields at x — 1: Nk, (xEp) O (XEg)%

Accounting for all 'stable’ hadrons (Tt5, kaons, (anti)nucleons)

@ relevant quantity for EAS muon content
TC aIT(on )
Zh:stable((xg)a“> = Zh:stablefde X iiE
o can be well approximated by S h_stapieX2) (0ty — 1)

@ = NHis governed by the total energy fraction taken by all
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Model uncertainties for predicted Ny /50 & sigi, arxiv: 2404.02085]

How to increase $p_stpicX2) (decrease <XTEP>)7

@ change the energy dependence of the pion exchange process
= larger forward yield of p-mesons = higher (E)/(Eqp)




Model uncertainties for predicted Ny /50 & sigi, arxiv: 2404.02085]

How to increase $p_stpicX2) (decrease <XTEP>)7

@ change the energy dependence of the pion exchange process
= larger forward yield of p-mesons = higher (E;w)/(E;o)

@ change the model calibration (e.g. based on NA61 data):
more kaons & (anti)nucleons




odel uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Neglecting absorptive corrections to the TkFexchange process:
larger forward production of p-mesons at higher energies
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Neglecting absorptive corrections to the TkFexchange process:
larger forward production of p-mesons at higher energies
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Neglecting absorptive corrections to the TkFexchange process:
larger forward production of p-mesons at higher energies
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NAG61 data: very high yields of kaons & (anti)protons in 7T C
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@ ~ 40% more kaons & ~ 60% more (anti)protons required
@ NB: such enhancements create a tension with other data on
kaon & (anti)proton production in T & pp interactions
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Relative changes of the calculated N;: < 10%
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Relative changes of the calculated N;: < 10%
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Relative changes of the calculated N;: < 10%
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Model uncertainties for Xmax [s0 & sigi, arXiv: 2409.05501]

Predictions for EAS maximum depth Xmax: 3 main 'switches’

@ inelastic proton-air cross section (cr'“eaIr

o inelastic diffraction rate (Od'ﬂrlr/cg‘e'alr)

@ inelasticity for p-air interactions (Kg‘,e;ir)
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Predictions for EAS maximum depth Xmax: 3 main 'switches’

@ inelastic proton-air cross section ((J"‘ealr

diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity for p-air interactions (Kgle;ir)

Inelastic cross section: well constrained by LHC data

o < 3% difference for Og}‘f'
between ATLAS & TOTEM
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@ even smaller difference for pA
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Predictions for EAS maximum depth Xmax: 3 main 'switches’
inel
@ inelastic proton-air cross section (07'%;)
diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity for p-air interactions (Kgle;ir)

Inelastic cross section: well constrained by LHC data

@ < 3% difference for og‘pe'
between ATLAS & TOTEM

® -
(79.5+1.80 & 77.41+2.92 mb) o 5"3_ 2R,
@ even smaller difference for pA

of ORS o' O (Rp+Ra)? g

o NB: 1% change of O'F?fgir = Roa= Ro + R
AXmax~ 1 g/cm? at 10° eV
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Predictions for EAS maximum depth Xmax: 3 main 'switches’

@ inelastic proton-air cross section (0'“92‘”

diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity for p-air interactions (Kgle;ir)

Inelastic cross section: well constrained by LHC data

o < 3% difference for Oi;g'
between ATLAS & TOTEM 7
(79.5:i: 1.80 & 77.41+292 mb) @ s R b= 2 Rj

@ even smaller difference for pA

ops! RS, opR! O (Ry+ Ra)? ° _

@ NB: 1% change of Olp?e.lmr = Roa= R+ R
AXmax~ 1 g/cm? at 10'° eV

Diffraction uncertainties: AXmax S 5 g/cm2 [SO, PRD89 (2014) 074009]
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The only significant freedom left: inelasticity for p— air

inel

@ higher energy = higher multiple scattering = higher Kp—air
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@ = one needs softer spectra for secondary hadrons (T, K...)
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The only significant freedom left: inelasticity for p— air

inel
p—air

@ = one needs softer spectra for secondary hadrons (T,K...)

@ higher energy = higher multiple scattering = higher K

o ideally: Feynman scaling for forward spectra

- -

How to give less energy away to secondary hadrons?

@ central rapidity density of secondaries: dN, /dy
constrained by data

@ main 'switch’: constituent parton 7|
(string end) momentum distribution ‘ N

(x~%a) [S0O, J.Phys. G29 (2003) 831] /;7—\
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The only significant freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir

@ = one needs softer spectra for secondary hadrons (T,K...)

o ideally: Feynman scaling for forward spectra

- -

How to give less energy away to secondary hadrons?

@ central rapidity density of secondaries: dN, /dy
constrained by data
@ main 'switch’: constituent parton ,/,\\\
(string end) momentum distribution R .
(x~%a) [S0O, J.Phys. G29 (2003) 831] /,'7—‘\
(4 \

® Oq — 1: approximate Feynman scaling for forward spectra

@ NB: may not work for semihard scattering (minijet production)
ot
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Vary the string end distributions, x~%a: with aq = 0.65,0.8,0.9

§ 9T
= g | p+tp-h" (p>05Gevic)
5§ T | — QGSIETHIl (059
A — X-08
5 q
X -09
4 | q
3 ;.ni...mmmmmmmun-nlﬁiﬁiﬁi.n..
) i Ty @ same model tuning:
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-2 -1 0 1 2 at LHC
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— p+p- h" (8Tevem.)
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Check with more forward data from CMS & TOTEM

@ the trend towards larger Og
not supported

@ but can not yet be disproved
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Check with more forward data from CMS & TOTEM

8 - p+p-h" (8Tevem.)

dn,,/dn

[ GBS o) @ the trend towards larger agq

| mmmm X-08
| i not supported
q
2 L L. L )
0 2 4 6 @ but can not yet be disproved

n

@ NB: higher discrimination power expected from combined
studies with central & forward detectors (e.g. LHCf & ATLAS)
[SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]




Model uncertainties for Xmax /50 & sigl, arxiv: 2409.05501]

Choice of string end distribution (x~%): impact on K
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@ up to ~ 6% reduction of K
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Choice of string end distribution (X~ %): impact on Xmax
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@ up to ~ 10 g/cm? shift of Xmax
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Choice of string end distribution (X~ %): impact on Xmax

@ up to ~ 10 g;/cm2 shift of Xmax

€ [ p-induced EAS
L0 ot @ why a moderate effect on
xé [ oeeeex 08 particle production & Xmax?
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Choice of string end distribution (X~ %): impact on Xmax

@ up to ~ 10 g;/cm2 shift of Xmax
850 [ p-induced EAS

@ why a moderate effect on
particle production & Xmax?

Xq- 0.9
mmmn Xq- 0.8
— QGSJET-III

X o (/T

800 . . .
@ 'warranted’ scaling violation due

to semihard scattering

(energy fraction taken by
perturbatively generated partons
= lower bound on Kg‘e' i)

750

700

P! B! IR —al

10" 10" 10" 10%°  [see backup slides]
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Exotic: modification of the hadronization by 'collective effects’

a q
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3
<
<
FYTIYITYI®:
9 @ standard treatment: strings of color field
g stretched between constituent partons
<
S .
3 and/or all perturbatively produced partons
3 _ s = production of partons (& hadrons)
- g covers the full rapidity range
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Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons
— q
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3
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Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

inel

e = small impact on Kpfai,

E

‘00‘00‘.DIDOIDDEDOIQOIDOII)J

0.0



Model uncertainties for Xmax /50 & sigl, arxiv: 2409.05501]

Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

inel

e = small impact on Kpfai,

@ rather nonphysical: collective effects may
be strong in central (small b) collisions only
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Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

@ = small impact on Kgﬂm
@ rather nonphysical: collective effects may

be strong in central (small b) collisions only

@ = should not have large impact on the
_ average parton production pattern
g (dominated by peripheral collisions)

‘00‘00‘.DIDOIDDEDOIQOIDOII)J
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Impact of string end distribution on K
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@ energy-dependence of K
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reduced drastically

o ag=0.9: K% doesn't

depend on energy above 1 PeV
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Impact of string end distribution on Kip“_e;ir (no parton cascades)
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Impact of string end distribution on Xmax (no parton cascades)
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Impact of string end distribution on Xmax (no parton cascades)
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The limit oq — 1: disfavored by LHCf data on forward neutrons
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The limit oq — 1: disfavored by LHCf data on forward neutrons
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More important constraints: from PAO measurements of Xhax

(g/enf)

xH

max

650 I~ p-induced EAS
600 |-
550 B Xy 09(no ISR)

L~ e X, 08 (no ISR)

a —— QGSJET-II

i Il Ll 11 \‘ Il Ll 111l
500

0P 107 102
E, (eV)

@ any change of Xmax = similar
(or even larger) shift of XHax
[see backup slides]




Model uncertainties for Xmax /50 & sigl, arxiv: 2409.05501]

More important constraints: from PAO measurements of Xhax
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@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax. only up to ~ 10 g/cm? shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
o reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

o energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
@ up to~10 g/cm2 shift of Xmax and up to ~ 5% change of N,

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ More exotic: 'collective effects’ = AXpax up to ~ 30 g/cm2
o disfavored by LHCf data & by PAO measurements of Xhax
I



Extra slides follow



(1) Technical improvement: Teexchange process

Starting with NA49 data at 158 GeV/c
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(1) Technical improvement: Teexchange process

And moving over 6 energy decades to 13 TeV c.m.
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(2) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi;+1), In(ptziﬂ/ptzi)
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Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
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Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
@ but: hardest scattering preceeded by
parton cascade (smaller pt, higher Xx)

@ = most important are first
('softest’) partons in the cascade
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(2) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
@ but: hardest scattering preceeded by
parton cascade (smaller pt, higher x)

@ = most important are first
('softest’) partons in the cascade

lower R higher x

higher R lower

a

@ the cascade starts at Q%—scale with

'soft’ gluons?
(fg(x, Q) Ox %, Ag=~0.2)




(2) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
@ but: hardest scattering preceeded by
parton cascade (smaller pt, higher x)

@ = most important are first
('softest’) partons in the cascade

lower R higher x

higher R lower

a

@ the cascade starts at Q%—scale with
'soft’ gluons?
(fg(x,Q3) O x 129, Ag ~ 0.2)

@ no: X-distribution of those gluons is
weighted with the hard scattering!




(2) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with Ogg

Whard(S) 0 / dx*dx” fg(x", Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’




(2) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with ggg

Whard(S) 0 / dx*dx fg(x",Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’

@ = gluons which succeed to interact have large x: [ x®hara—8g—1

o i.e., first partons in a perturbative cascade are 'valence-like'
(independently on our assumptions for string end distribution)




(3) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development
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(3) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development

Xy

@ = parallel up/down shift of the i
cascade profile (same shape)

00

@ = same effect on Xmax & XHax

V4
T (vomur o ¥

0

@ additionally: the corresponding
change of physics impacts Trair
interactions at all the steps of the
cascade development

o = cumulative effect on Xhax




