New developments in EPOS :

Toward a global approach from Heavy Ions to Cosmic Rays

Tanguy Pierog

Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany

With K.Werner, SUBATECH, Nantes, France

Cosmic Ray and neutrinos in the multimessenger era, APC, Paris, France December the 9th 2024

Outline

Introduction

- Updates \rightarrow EPOS LHC-R
 - A real global approach to do hadronic interactions
- Impact of Hadronic Rescattering (HS)
- Predictions for air showers (EAS)
 - $\clubsuit X_{_{max}}$ and μ
- Muon puzzle
 - Why collective effects impact muon production ?

Recent LHC data provide new constraints on models changing X_{max} and the muon production if a global approach is used.

Global approach Impact of HS X_{max} and µ Muon puzzle

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π-K)-Air)
 - (in)elasticity
 - multiplicity
 - <u>charge ratio</u> and baryon production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...
- Model tuned to accelerator data

Theory AND data are important to constrain the hadronic model parameters.

Global approach Impact of HS X_{max} and μ Possible updates since EPOS LHC

- First LHC data lead to reduced differences between models
 But a number of new data since model release could be use to further improve the models :
 - Update of the p-p cross sections (ALFA)
 - Data at 13 TeV (CMS, ATLAS, LHCf)
 - More detailed p-Pb measurements (fluctuations) CMS
 - Particle yields as a function of multiplicity (ALICE, LHCb)
 - Very important to understand the mechanism behind particle production
- Update of EPOS LHC → EPOS LHC-R
 - New EPOS 4 available for heavy ion physics but not usable for air showers (yet)
 - Modify EPOS LHC to take into account new data and new knowledge accumulated with (and code from) EPOS 4
 - Almost final result (but still preliminary) including all <u>collective effects</u> !

Introduction

Introduction

What means global approach ?

Global approach is the key !

- Tuning models neglecting some physics process may lead to wrong parameters !
- Correct tune possible only if everything taken into account
- Even without a direct impact on the shower development (rare particle or not forward), it will change model parameters and the extrapolation (in energy or phase space)

String Fragmentation

- Common hadronization in all the models
- Parameters fixed on e+-e- only in EPOS
 - Other CR models tuned on p-p data
 - "Contamination" by beam remnant
- Very important for forward particle production (EAS)

Annihilation at high energy

Used for beam remnant hadronization

Used in dilute systems = CORONA

Generic "EPOS"

First attempt using theoretical constraints

Impose isospin symmetry (u=d) for pions, ρ s and nucleons BEFORE decay

- Fix ρ^0 and multiplicity

Multimessenger – Dec. 2024

Generic "EPOS"

First attempt using theoretical constraints

- Impose isospin symmetry (u=d) for pions, ρ s and nucleons BEFORE decay
- Fix ρ^0 and multiplicity

Core-Corona

- Core hadronization = thermal hadronization of Quark Gluon Plasma
- Mixing of core and corona hadronization needed to achieve detailed description of p-p data (ref K.Werner)
 - Evolution of particle ratios from pp to PbPb
 - Particle correlations (ridge, Bose Einstein correlations)
 - Pt evolution, …

Both hadronizations are universal but the fraction of each change with particle density

Hadronic Rescattering (HS)

Missing effect in all CR models until now !

- Re-interaction of hadrons after parton hadronization (space-time evolution)
- "traditionally" used only for heavy ion collisions (until recently NOT in p-p)
- No direct impact on EAS development since forward particles escape
- But significant to large impact at midrapidity in heavy ion collisions !

Let's apply it to all system (from e+-e- to PbPb) !

Example with protons in p-p and Pb-Pb @ LHC

Example with protons in p-p and Pb-Pb @ LHC

Introduction Global approach Impact of HS X_{max} and μ Muon puzzle

Example with Lambda particle in p-p and Pb-Pb @ LHC

Example with Lambda particle in π -Air @ all energies

Impact on air showers

Changes applying core-corona (same results with hadronic rescattering)

- Same X_{max}
- Increase of the number of muons by up to 5% ... only !

Impact on air showers

Changes applying core-corona (same results with hadronic rescattering)

- Same X_{max}
- Increase of the number of muons by up to 5% ... only !

- But what about e+-e- results after applying hadronic rescattering ?

T. Pierog, KIT - 17/31

Multimessenger – Dec. 2024

Impact of HS on light systems

If short hadronization time (<1fm/c), particles close enough to interact

Impact of HS

- Small but significant effect even in e+e- interactions
- Reduce ρs and nucleons and increase pions

Global approach

Introduction

Impact of HS

 m_{m} and μ

Impact of HS on light systems

If short hadronization time (<1fm/c), particles close enough to interact

- Small but significant effect even in e+e- interactions
- \clubsuit Reduce ρs and nucleons and increase pions

Multimessenger – Dec. 2024

Retune basic parameters with HS

Impact of HS

Second attempt using experimental constraints

- Keep symmetry for pions and nucleons but allow asymmetry for ρ (higher mass)
- Increase contribution of ρs and nucleon to compensate the effect of HS

👄 EPOS LHC-R

Global approach

Introduction

Global approach Impact of HS

 $\sum_{m=1}^{\infty}$ and μ

Retune basic parameters with HS

Second attempt using experimental constraints

- Keep symmetry for pions and nucleons but allow asymmetry for ρ (higher mass)
- \clubsuit Increase contribution of $\rho s~$ and nucleon to compensate the effect of HS

EPOS LHC-R

Impact of HS

Check ALICE data

Impact of HS

Impact on air showers (2)

Changes applying new tune taking into account hadronic rescattering

- Same X_{max} (not change applied to cross-section, multiplicity or elasticity)
- Increase the number of muons by ... 30 to 50% (different slope) !

Mostly due to asymmetry between charge and neutral ps !

Introduction Global approach

Impact of HS

(____and)

Other improvements in EPOS LHC-R

Number of limitations identified and solved compared in EPOS LHC

- Problem with nuclear fragments solved
 - Fluctuations of X_{max} for iron similar to others
- No more artificial symmetry neutron and proton
- Pion exchange and real Pomeron exchange
 - LHCf data
- Charm production
 - IceCube
- Indirect impact of core-corona (multiplicity) and hadronic rescattering (shape in pseudorapidity)
 - Higher elasticity due to smaller light cone momenta (see Sergey's talk)
- Lower cross-sections

max

Global changes

- Consequence of retuning, now EPOS shifted by +20 to 30 g/cm²
 - Still in full agreement with accelerator data !

X

Same elongation rate than QGSJETII-04 for protons

N_μ

Global changes

- Consequence of retuning, now EPOS shifted by +20 g/cm²
- Increase of the number of muons by about 10%
- Change in muon spectrum !

x 10 ⁴

Ε_μ

First simulations with full collective effect implementation:

Simulations without core-corona but ρ asymmetry already have more muons

Parallel shift changing all muon energies

- Pion-Air multiplicity impact muon energy between 10 and 100 GeV
- Better tune of kaons (indirect impact of core-corona)

Increase >100 GeV muons (Ice-Top/Ice-Cube)

Multimessenger – Dec. 2024

X_{max} and μ

First simulations with full collective effect implementation:

- Simulations without core-corona but ρ asymmetry already have more muons

E_u

Parallel shift changing all muon energies

- Pion-Air multiplicity impact muon energy between 10 and 100 GeV
- Better tune of kaons (indirect impact of core-corona)
- Very high energy muons from charm ! (background for neutrino analysis)

Muon Puzzle Solved ?

EPOS LHC-R, first model producing a deeper X_{max} and more muons and being compatible with measured accelerator data (better at LHC) :

- \blacksquare Deeper X_{max} give larger <InA> reducing the gap with measured muon content
- Increase of muons due to tuning taking into account collective effects further decrease the gap to reach Auger systematics
- → What about low energy ? Correlation Ne-N μ OK because of deeper X_{max} !

Impact of HS

Why?

Hadronic rescattering is important to tune properly the models !

- Change ratio between π and ρ in string fragmentation depending on phase-space
 - Forward particle production not the same than at mid-rapidity
- As seen before, if the effect is not taken into account
 - Either overestimate production compared to data ("bad tune")

Sibyll*

If ρ^0 or underestimate forward production of ρ^0 to get it right with mid-rapidity data

Impact of HS

Why?

Hadronic rescattering is important to tune properly the models !

- Change ratio between π and ρ in string fragmentation depending on phase-space
 - Forward particle production not the same than at mid-rapidity
- As seen before, if the effect is not taken into account
 - Either overestimate production compared to data ("bad tune")

Sibyll*

If ρ^0 or underestimate forward production of ρ^0 to get it right with mid-rapidity data

All models until now !

Outlook

- Updated results of cross-sections, multiplicity and diffraction
 Large impact on X_{max}
 - Larger <InA> (heavier primary mass → reduce "muon puzzle")
- Details of hadronization matters
 - Important role of resonances
 - \bullet ρ^0 impacted by hadronic rescattering, important to take it into account
 - Evolution of strangeness with multiplicity
 - Different type of hadronization in core = more muons

Combination of the 3 effects may solve the muon puzzle (to be confirmed) !

- Source of muon puzzle probably due to the fact that <u>hadron rescattering</u> was always neglected
 - Rescattering change the correlation between mid-rapidity (data and tuning) and forward particle production (EAS)

Updated EPOS LHC-R released in 2024 and then adapting EPOS 4 for CR

Recent LHC data provide new constraints on models, changing X_{max} and the muon production if a global approach is used.

Providing a possible solution to the "muon puzzle" !

Thank you !

Inelastic Cross-Section

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision

Cross-Section Reduced

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision
 - p-p cross-section slightly too high in all models
 - Change by up to -10% at the highest energy

Pseudorapidity

- Angular distribution of newly produced particles
- New data at 13 TeV in p-p
 - Test extrapolation with different triggers
 - Sibyll has a clear difference with other models (and data) : too narrow !
- Detailed data at 5 TeV for p-Pb
 - Wrong multiplicity distributions in all models (before retune)

Impact of HS

___ and μ

Muon puzzle

Improvements in EPOS LHC-R

- Number of limitations identified in EPOS LHC
- Problem with nuclear fragments
 - Double counting for single nucleons
 - Missing multifragment production
 - Now similar to other models
 - Significant impact on X_{max} fluctuations for nuclei
- Simplified high mass diffraction and pion \circ exchange replaced by real emission (IP or π)

EPOS LHC-R interaction with Air

(preliminary)

Hadronization in Simulations

- Historically (theoretical/practical reasons) string fragmentation used in high energy models (Pythia, Sibyll, QGSJET, ...) for proton-proton.
 - Light system are not "dense"
 - Works relatively well at SPS (low energy)
 - ➡ But problems already at RHIC, clearly at Fermilab, and serious at LHC :
 - Modification of string fragmentation needed to account for data
 - Various phenomenological approaches :
 - Color reconnection
 - String junction
 - ✤ String percolation, …
 - Number of parameters increased with the quality of data ...
- Statistical model only used for heavy ion (HI) in combination with hydrodynamical evolution of the dense system : QGP hadronization
 - Account for flow effects, strangeness enhancement, particle correlations...

Core-Corona appoach and CR

To test if a QGP like hadronization can account for the missing muon production in EAS simulations a core-corona approach can be artificially apply to any model

- Particle ratios from statistical model are known (tuned to PbPb) and fixed : core
- Initial particle ratios given by individual hadronic interaction models : corona
- → Using CONEX, EAS can be simulated mixing corona hadronization with an arbitrary fraction ω_{core} of core hadronization: $N_i = \omega_{core} N_i^{core} + (1 \omega_{core}) N_i^{corona}$

Phys.Rev.D 107 (2023) 9, 094031 1902.09265 [hep-ph]

Phys.Rev.D 107 (2023) 9, 094031 1902.09265 [hep-ph]

Introduction

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy
 β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - β changes the muon energy evolution but not X_{max}

•
$$\beta = \frac{\ln(N_{mult} - N_{\pi^0})}{\ln(N_{mult})} = 1 + \frac{\ln(1 - \alpha)}{\ln(N_{mult})}$$

• +4% for β -> -30% for $\alpha = \frac{N_{\pi^0}}{N_{mult}}$

$$N_{\mu} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

 $X_{max} \sim \lambda_e \ln \left(E_0 / (2.N_{mult} \cdot A) \right) + \lambda_{ine}$

17%

 10^{3}

 10^{4}

 10^{5}

 10^{6}

 10^{7}

 10^{8}

 10^{2}

 10^{8}

 10^{9}

E (GeV)

 10^{10}

 10^{7}

105

 10^{3}

 10^{2}

 10^{4}

 10^{6}

0.40

 $\begin{array}{c} \mathbf{R} = \mathbf{E}_{em} / \mathbf{E}_{had} \\ = \mathbf{B}_{em} / \mathbf{E}_{had} \\ = \mathbf{0.30} \end{array}$

0.25

0.20

T. Pierog, KIT - 42/31

 10^{10}

Plot by M. Perlin

16%

 10^{9}

E (GeV)

Evolution of hadronization from core to corona

The relative fraction of π^0 depends on the hadronization scheme \Rightarrow Change of ω_{core} with energy change $\alpha = \frac{N_{\pi^0}}{N_{\text{mult}}}$ or $R(\eta) = \frac{\langle dE_{\text{em}}/d\eta \rangle}{\langle dE_{\text{had}}/d\eta \rangle}$

which define the muon production in air showers.

Evolution of hadronization from core to corona

Possible Particle Physics Explanations

A 30% change in particle charge ratio ($\alpha = \frac{N_{\pi^0}}{N_{mult}}$) is huge ! \rightarrow Possibility to increase N_{mult} limited by X_{max}

- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al., Julien Manshanden) ?
 - String Fusion (Alvarez-Muniz et al.) ?

Problem : no strong effect observed at LHC (~10¹⁷ eV)

- Unexpected production of Quark Gluon Plasma (QGP) in light systems observed at the LHC (at least modified hadronization)
 - **Reduced** α is a sign of QGP formation (enhanced strangeness and baryon) production reduces relative π^0 fraction. Baur et al., arXiv:1902.09265)
 - α depends on the hadronization scheme
 - How is it done in hadronic interaction models ?

Impact of HS

LHC acceptance and Phase Space

- p-p data mainly from "central" detectors
 - → pseudorapidity η =-ln(tan(θ /2))
 - \bullet $\theta=0$ is midrapidity
 - \bullet θ >>1 is forward
 - •• $\theta < <1$ is backward
- Different phase space for LHC and air showers
 - most of the particles produced at midrapidity
 - important for models
 - most of the energy carried by forward (backward) particles
 - important for air showers

A 3rd way : the core-corona approach

Consider the local density to hadronize with strings OR with QGP:

First use string fragmentation but modify the usual procedure, since the density of strings will be so high that they cannot possibly decay independently : core

