Selected Highlights of the Pierre Auger

Ralph Engel, for the Pierre Auger Collaboration

(picture curtesy S. Saffi)

Observatory

Air shower observables (hybrid observation)

Energy spectra of Auger Observatory

Combined energy spectrum of Auger Observatory PIERRE AUGER E [eV] OBSERVATORY

Combined energy spectrum of Auger Observatory

(Boncioli, Auger, UHECR 2024)

Mass composition from longitudinal shower profile

Depth of shower maximum as composition-sensitive observable

(Auger, Phys. Rev. D90 (2014), 122005 & 122005, ICRC 2023)

factor 4 in energy

Mass composition from surface detector data

Simulated signal of one surface station

10

Mass composition results of Auger Observatory

Important: LHC-tuned interaction models used for interpretation

(FD telescopes: PRD 90 (2014), 122005 & 122005, updated ICRC 2023) (SD risetime: Phys. Rev. D96 (2017), 122003)

(AERA/radio: PRL & PRD 2023) (SD DNN: to appear in PRL & PRD)

$$\sigma_{X_1,p} \sim 45 - 55 \,\mathrm{g/cm^2}$$

$$\sigma_{X_1,\mathrm{Fe}} \sim 10 \,\mathrm{g/cm^2}$$

$$(E \sim 10)$$

11

Model-independent observation in DNN data set

Energy-independent elongation rate excluded at 4.4 sigma Breaks of elongation rate correlated with breaks in energy spectrum

(Auger to appear in PRL & PRD 2406.06315, 2406.06319)

Model calculations for mass composition and flux

14

Apparent tension with hadronic interaction models

Arrival directions – large angular scales (dipole)

Science 357 (2017) 1266)

$E \; [\text{EeV}]$	N	d_{\perp} [%]	d_z
4-8	118,722	$1.0\substack{+0.6\\-0.4}$	-1.3
≥ 8	$49,\!678$	$5.8\substack{+0.9\\-0.8}$	-4.5
8-16	$36,\!658$	$5.7^{+1.0}_{-0.9}$	-3.1
16-32	10,282	$5.9^{+2.0}_{-1.8}$	-7
≥ 32	2,738	11^{+4}_{-3}	-1

Arrival directions – large angular scales (dipole)

Centaurus A: E > 3.8 10¹⁹ eV, ~27° radius, 4.0 σ (post trial) **Starburst galaxies:** $E > 3.8 \ 10^{19} \text{ eV}$, ~25° radius, 3.8 σ (post trial)

Discovery level of 5σ expected after 2025

First probe of TA over-densities thanks to inclined showers

(Astrophysical Journal, 935:170, 2022, update ICRC 2023)

Arrival directions – high-energy anisotropy searches

 $Z_{\rm LM}$

significance

local Li–Ma

Search for first & second maximum

		1st maximum						
E_{\min}	$N_{\rm tot}$	L	B	$rac{{\cal E}_{ m in}}{{\cal E}_{ m tot}}$	$N_{\rm bg}$	$N_{\rm in}$	$rac{\Phi_{ m in}}{\Phi_{ m out}}$	$Z_{\rm LM}$
$20 { m EeV}$	8832	162°	-6°	9.56%	829.	990	$1.19\substack{+0.04\\-0.04}$	$+5.2\sigma$
$25~{\rm EeV}$	5380	161°	-9°	9.56%	504.	608	$1.21_{-0.05}^{+0.05}$	$+4.2\sigma$
$32 { m EeV}$	2936	163°	-8°	9.68%	276.	363	$1.32^{+0.08}_{-0.07}$	$+4.7\sigma$
$40~{\rm EeV}$	1533	162°	-6°	9.56%	140.	208	$1.49^{+0.11}_{-0.11}$	$+5.1\sigma$
$50 { m EeV}$	713	161°	-7°	9.56%	64.4	103	$1.60^{+0.18}_{-0.16}$	$+4.2\sigma$
$63 { m EeV}$	295	163°	-3°	9.56%	26.3	46	$1.75_{-0.26}^{+0.30}$	$+3.3\sigma$
					2nd n	naxin	num	

E_{\min}	$N_{\rm tot}$	L	B	$rac{\mathcal{E}_{ ext{in}}}{\mathcal{E}_{ ext{tot}}}$	$N_{\rm bg}$	N_{in}	$rac{\Phi_{ ext{in}}}{\Phi_{ ext{out}}}$	$Z_{\rm LM}$
$20 { m EeV}$	8832	241°	-5°	10.27%	900.	971	$1.08\substack{+0.04 \\ -0.04}$	$+2.2\sigma$
$25~{\rm EeV}$	5380	275°	-19°	8.00%	426.	482	$1.13_{-0.05}^{+0.05}$	$+2.6\sigma$
$32 { m EeV}$	2936	276°	-17°	7.89%	229.	264	$1.15_{-0.07}^{+0.08}$	$+2.2\sigma$
$40~{\rm EeV}$	1533	345°	-7°	1.00%	15.2	26	$1.71_{-0.32}^{+0.36}$	$+2.5\sigma$
$50 { m EeV}$	713	322°	-22°	3.69%	25.9	39	$1.51_{-0.23}^{+0.26}$	$+2.4\sigma$
$63~{\rm EeV}$	295	223°	$+26^{\circ}$	9.56%	26.7	42	$1.57^{+0.28}_{-0.25}$	$+2.6\sigma$

Cen A ~ 3.1σ post trial, all others below 2.7σ

Arrival directions – high-energy anisotropy searches

E_{\min}	$N_{\rm tot}$	$rac{\mathcal{E}_{ ext{in}}}{\mathcal{E}_{ ext{tot}}}$	$N_{\rm bg}$	$N_{\rm in}$	$rac{\Phi_{ ext{in}}}{\Phi_{ ext{out}}}$	$Z_{\rm LM}$	99%U.L.
$44.6 \mathrm{EeV}$	1074	1.00%	10.7	9	$0.84\substack{+0.31 \\ -0.25}$	-0.5σ	1.76
$20.5 \mathrm{EeV}$	8374	0.84%	70.1	65	$0.93\substack{+0.12 \\ -0.11}$	-0.6σ	1.23
$25.5 \mathrm{EeV}$	5156	0.84%	43.5	39	$0.90\substack{+0.15 \\ -0.14}$	-0.7σ	1.29
$31.7 \mathrm{EeV}$	2990	0.87%	26.0	27	$1.04\substack{+0.21 \\ -0.19}$	$+0.2\sigma$	1.61

UHECR 2024)

Combined fit spectrum, mass composition & anisotropy

⁽Auger, JCAP 01 (2024) 022)

Fit with additional model parameters: magnetic field blurring, catalog contribution fraction

- signal fraction of 20% for SBG catalog;
- main contribution from Centaurus region,
- results compatible with standard combined fit
- significance of TS is ~4.5 σ
- but no coherent deflection

Multi-messenger physics – photons

Photons interact deeper (larger X_{max}), fewer muons (rise time, lateral slope)

10² L E₀ [km⁻² sr⁻¹ yr⁻¹] 10 gral photon flux for E 10^{−3} 10^{-4} 10¹⁷

Multi-messenger physics – neutrinos

Phase I (2004 – 2023)

A

2004

a star

Phase II (2024 – 2035)

2024

Phase II: upgrade of the Observatory – AugerPrime

Physics motivation

- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers
- Much better understanding of new and old data

Components of AugerPrime

- 3.8 m² scintillator panels (SSD)
- New electronics (40 MHz -> 120 MHz)
- Small PMT (dynamic range WCD)
- Radio antennas for inclined showers
- Underground muon counters (750 m array, 433 m array)
- Enhanced duty cycle of fluorescence tel.

Composition sensitivity with 100% duty cycle

(AugerPrime design report 1604.03637)

radio

Upgrade of Auger Observatory completed

Example of rich information in data of Phase II

Sub-luminal particles: neutrons in scintillators

Sub-luminal particles: neutrons in scintillators

Extension of Auger data taking until 2035

Nov. 2023: AugerPrime review

Nov. 16, 2024: extension of International Agreement for Auger Phase II

Supplementary material

Multi-messenger observation of sources

Analysis of individual events Stacking analysis of BBH mergers

Search for spatial neutrino and UHECR correlations (ApJ 934 (2022) 164)

Instantaneous apertu **Multi-messenger: sea**

ibe if direction of source is favorable 1 photons in coincidence with GW events

Fundamental physi

sudies and searches

Atmospheric and geo-physics observations

An invitation: Auger open data

DOI:10.5281/zenodo.4487613

opendata.auger.org

Significance $[\sigma]$

Auger-TA comparison of X_{max} distributions (2022)

Test: modification of hadronic interaction models

2297 high-quality showers for $\log_{10}(E_{FD} [eV]) = 18.5-19.0, \theta < 60^{\circ}$

Test: 2D fit without any adjustments

Gideon-Hollister correlation coeficient [J. Am. Stat. Assoc. 82 (1987) 656]

Test: 2D fit with rescaling hadronic component

Test: 2D fit with rescaling had. component and shifting Xmax

Test: modification of hadronic interaction models (ii)

Assumption: relative fluctuations not changed Main improvement by re-scaling muon component (attenuation, more muons at ground) Further improvement by shifting Xmax of models to larger depth (heavier composition)

Motivation for looking for neutrons

Vulcano Ranch (1962-63)

J. Linsley (J. Phys. G: Nucl. Phys. 10 (1984) L191)

Note by A.M. Hillas (1982)

scattered particles. The most likely cause of the pulses seems therefore to be heavily-ionizing protons generated by neutrons of 30 - 200 MeV which have performed a random walk from the central region of the shower. The neutrons are non-relativistic and suffer large-angle scattering by interactions with nuclei. (Non-relativistic muons do not deposit enough energy in a scintillator before stopping, and are not scattered so much in the last kilometre or so.) Large numbers of sub-GeV neutrons and protons are produced as recoils from the interactions of hadrons with nuclei (and also to a non-negligible extent from interactions of photons with nuclei). The number of such nucleons should be nearly proportional to shower primary energy, but if the pulses are due to individual particles, one would not expect smaller showers to show the subluminal particles as smaller-amplitude pulses, but rather to show the same large pulses though much less often. Water-Cerenkov detectors are not expected to detect these particles to any appreciable extent.

Today: Extensive literature on dedicated neutron measurements (e.g. Stenkin and others)

- Sub-luminal pulses with a delay of at least 3µs
 - Sometimes several pulses observed
 - Typically 1 km from core, high-energy showers
 - Greisen: **neutrons** as sub-luminal particles

Comparison of expectations for muons and neutrons

$$N_{\pi^{\pm},k} = (n_{\rm ch})^k$$

$$\beta = \frac{\ln n_{\rm ch}}{\ln n_{\rm tot}} \sim 0.9$$

(Superposition model)

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\beta}$$

(Matthews, APP22, 2005)

$$N^A_\mu ~\sim~ A^{1-\beta}N_\mu ~\sim~ 1.4~N_\mu$$

Muons

- Mainly produced in hadronic interactions through decay of charged pions and kaons
- Small energy loss, large attenuation length (~1000 g/cm²)
- Directional information approx. preserved
- Arrive early at ground (less multiple scattering) than em. particles)

Neutrons

- High energy: mainly produced in hadronic interactions, baryon-antibaryon pair production
- Low-energy: photo-dissociation of air nuclei
- Energy loss due to elastic scattering, attenuation length (~100 - 150 g/cm²)
- Directional information lost, wide lateral distribution
- Bulk of neutrons arrives late with very long time delay (neutron cloud / thunder)

Air shower results: time delay distribution

Muons: time delay of bulk of particles: 1 - 500 ns

Neutrons: time delay of high-energy particles: 1 - 20 μs, slow (thermal) neutrons up to 100 ms

Air shower results: muons vs. neutrons at large distance

Close to shower maximum: neutrons as abundant as muons

Past shower maximum: neutrons much less abundant than muons

Neutron expectations (see 2406.11702 for details)

Neutrons

- Interesting sub-luminal particles
- Feature-rich and very wide energy spectrum
- Notoriously difficult to detect
- Very difficult to simulate accurately (environment)
- Expected to produce late pulses in scintillators

Scaling observations

- Production ~50% hadronic, ~50% electromagnetic. dissociation
- Hadronic production scales similar to muons
- Electomag. production scales linearly with energy
- Attenuation (neutron removal) length 80 ... 200 g/cm²
- Very wide lateral distribution, wider than muons
- Typical delay in arrival time ~ 1 ... 20 μ s (E_{kin} > 20 MeV)
- Thermal neutrons up to ~ 100 ms

First very I	rough estimat	e of
detection	probabilities (%)

	Neutron	Neutron Scintillator		Water		
	Energy	Threshold	Three	shold		
	(MeV)	(100 e-keV)	(1/300 VEM)	(1/100 VEM)		
	0.0001	2.3×10^{-2}	13.7	$< 10^{-3}$		
	0.001	1.0×10^{-2}	13.7	$< 10^{-3}$		
	0.01	4.2×10^{-3}	13.7	$< 10^{-3}$		
	0.1	1.3×10^{-3}	15.0	$< 10^{-3}$		
	0.5	$< 10^{-3}$	18.5	$< 10^{-3}$		
	0.7	4.65	20.1	$< 10^{-3}$		
	1	14.7	16.9	$< 10^{-3}$		
ion	2	17.1	25.1	$< 10^{-3}$		
	3	15.5	28.0	$< 10^{-3}$		
	5	12.4	29.0	4×10^{-3}		
	10	9.78	41.3	11.1		
	20	7.67	49.2	19.1		
	30	6.46	53.2	22.8		
	50	4.47	58.6	30.3		
	100	2.87	61.8	37.5		
	200	2.30	63.9	44.4		
	500	2.31	75.3	52.3		
	1000	2.55	83.2	79.7		

