

Metropolitan University

Telescope Array Results

Yoshiki Tsunesada **Osaka Metropolitan University**

Cosmic Rays and Neutrinos in the Multi-Messenger Era, APC Laboratory Paris December 9 2024

TA: Utah, USA 39° N 700km² **Operational since May** 2008

0 1 2

Telescope Array (TA)

- The largest cosmic ray detector in the northern hemisphere.
 - Constructed in Utah, USA, by Japan, US, Russia, and Korea
 - 700km² (c.f. Singapore)
 - $_{\circ}$ c.f. AGASA 100km²
- Use both types of detectors: fluorescence detectors (FD) and surface detectors (SD)

TA Detectors

Millard county, Utah, US 39N. 141W

✤ 507 SDs

- 3m² double-layered plastic scintillators
 - Water Cherenkov tanks in Auger
- 40MHz digitization (cf. AGASA 10us integrated)
- 1.2km separation
- 700 km²
- cf. AGASA 100km², Auger 3,000km² 100% duty cycle
- 3 FD stations
 - Black Rock 12
 - Long Ridge 12
 - Middle Drum 14 (refurbished HiRes)
 - 10% duty cycle

TAx4 detectors

Expanded Surface Array

- 2.08km spacing (1.2km TA)
- SDs similar design as TA
- 257 of planned 500 deployed (operational since Nov/2019)

Fluorescence Telescopes

- 4 telescopes viewing NE lobe (since Jun/2019)
- 8 telescopes viewing SE lobe (since Aug/2020)
- 3°-17° elevation

TA Highest Energy Event "Amateras particle"

SCIENCE 23 Nov 2023 Vol 382, Issue 6673 pp. 903-907 DOI: 10.1126/science.abo5095

Surface detector array of TA

10

40 20 40

20

108

SD0217: 21.8 MIP at 2.3 km

. . . .

SD0316: 19.2 MIP at 2.4 km

SD0317: 78.6 MIP at 1.5 km

TA highest event "Amateras" 2021-05-27 10:35:56.47, No FD observation

8

SD Event Reconstruction

Use "S800" as an energy estimator

The SD array measures the "footprint" of a shower

Perpendicular distance from shower axis, [1200m]

9

TA SD Energy Determination

TA 2024 Energy Spectrum

J. Kim, D. Ivanov, G. Thomson, for TA, UHECR2024, November 20, Malargue

Spectral Features in 16-year TA SD Data

2024-11-20

UHECR2024 @ Malargüe, Argentina

Recalculated the spectrum (common δ band)

TA event are reconstructed using AirFly, CIC, and other parameters kept unchanged

Comparison with Auger

- Auger: 35°S
 - \circ θ up to 60°

+24.8

TAx4 Spectrum

- TAx4 spectrum 2019-2022
- No inter-subarray triggers
- Consistent with TA SD

Measurement of Xmax

TA Xmax Measurement: BR/LR FD-SD Hybrid

R. U. Abbasi *et al* 2018 *ApJ* **858** 76 PoS(ICRC2019)280

- 10-years FD+SD data
- Agreement with light compostion up to 1019.1 eV
- Need more data for higher energies

SD Composition Study

Y. Zhezher, ICRC2021

Phys.Rev.D 99 (2019) 2

- SD data, compositionsensitive parameters like Linsley curvature, number of peaks in traces,
- BDT classifier

Implication of mass composition from the arrival direction distribution

- Use 2MRS galaxy map as the tracer of LSS-mass distribution
- Introduce the smearing angle θ to blurr the cosmic ray source due to the magnetic field
- Employ a *flux sampling method* and compare the TA data in terms of the test statistic,

$$TS(\theta_{100}) = -2\sum_{k} \left(\sum_{i} \ln \frac{\Phi_{k}(\theta_{100}, \mathbf{n}_{i})}{\Phi_{iso}(\mathbf{n}_{i})} \right)$$

- **n**_i: *i*-th TA event direction
- $\theta = \theta_{100}/E_k$
- θ_{100} : Smearing angle at 100EeV

TA highest energy SD events are isotropic

- Small deflections (< 10°) is not compatible at all energies
- Θ₁₀₀^{min} found around 10-30 degrees below logE < 20: Compatible with LSS at 2σ level
- Prefers complete isotropy for logE > 20, which implies heavy composition at the highest energies

TA Hot Spot

- E > 57 EeV, 228 events
- Local significance 4.9 sigmas at (144.0, 40.5)
 - Nobs: 46
 - Nexp: 19.1
- Global significance 2.9 sigmas

TA Hot Spot Is Still Hot

Amateras is uncorrelated with LSS

Telescope Array Collaboration, Science 382, 903–907 (2023)

Fig. 3. Arrival directions of all >100-EeV cosmic

rays. Empty circles indicate the arrival directions of all cosmic rays observed by TA SD over 13.5 years of operation that had energies >100 EeV. The background and other symbols are the same as in Fig. 2. No clustering around the highest-energy event (thick circle) is evident.

Amateras is uncorrelated with LSS

Summary

- TA is operational more than 16 years since 2008
- Energy spectrum updated
 - \circ Highest-energy steepening at logE = 19.83, 6.3 sigmas
 - "Instep" structure confirmed at logE = 19.15, 5.2 sigmas
 - \circ Good agreement with Auger for logE < 19.5
 - \circ Northern/southern sky tension
- Composition studies
 - $\,\circ\,$ "Light" composition up to $10^{19.1}\,eV$ by FD, $10^{19.7}$ by SD
 - \circ Heavy composition favors from the arrival direction distribution for E > 10²⁰ eV
- TA hotspot is still hot at (144.0, 40.5) for E > 57 EeV
- Amateras particle
 - o May 27, 2021
 - o 244 EeV, the 2nd highest energy all the time, the highest energy event detected by an SD array
 - $\circ~$ No FD data
 - $\circ~$ Identification of the primary particle type ongoing

Backup

Attempt 2: Rainbow table vs CIC

 $E_{SD,rainbow}$ vs. E_{CIC}

using 14yrs TASD data

Energy comparison

