

Component separation for LiteBIRD

Arianna Rizzieri, on behalf of the LiteBIRD collaboration

LB Day @ APC

13/05/2024

Arianna Rizzieri

Need for component separation

astrophysical foregrounds

Thermal Dust emission, Synchrotron emission >> primordial B-mode signal we target

Credits: J. Errard

LB Day @ APC

Need for component separation

Projected polarization sensitivities for a 3-year full-sky survey:

Parametric component separation

Component separation model $\begin{bmatrix} d_{v_0}^{Q,U} \\ \vdots \\ d_{v_n}^{Q,U} \end{bmatrix} = \begin{bmatrix} a_{v_0}^{cmb} & a_{v_0}^{dust} & a_{v_0}^{synch} \\ \vdots & \vdots & \vdots \\ a_{v_n}^{cmb} & a_{v_n}^{dust} & a_{v_n}^{synch} \end{bmatrix} \begin{bmatrix} s_{cmb}^{Q,U} \\ s_{dust}^{Q,U} \\ s_{synch}^{Q,U} \end{bmatrix} + \begin{bmatrix} n_{v_0}^{Q,U} \\ \vdots \\ n_{v_n}^{Q,U} \end{bmatrix}$

LiteBIRD Collaboration, PTEP, 2023

- **d** : data vector of the measured signal for all the frequencies and Stokes parameters
 - **A** : component Mixing Matrix \rightarrow parametrized by spectral parameters β : **A**(β)
- s : true values signals for each component
- **n** : instrumental noise

unknown

Component
separationSolving by maximum likelihood:
(FGBuster)Step 1
Step 2Spectral parameter estimates β
Step 2Separation(FGBuster)Step 2
Step 2Sky components s

Foreground modeling

13/05/2024

method

Synchrotron: power law

$$[Q_{s}, U_{s}](\hat{n}, \nu) = [Q_{s}, U_{s}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{s}(\hat{n})} \rightarrow 3 \text{ spectral parameters} + \text{ amplitudes}$$
Dust: modified blackbody

$$[Q_{d}, U_{d}](\hat{n}, \nu) = [Q_{d}, U_{d}](\hat{n}, \nu_{\star}) \cdot \left(\frac{\nu}{\nu_{\star}}\right)^{\beta_{d}(\hat{n})-2} \frac{B_{\nu}(T_{d}(\hat{n}))}{B_{\nu_{\star}}(T_{d}(\hat{n}))}$$
LB Day @ APC Arianna Rizzieri

11

Parametric component separation

Adaptive multi-resolution technique

to account for spatial variability of the spectral parameters

 \rightarrow 12x(Nside)² patches + amplitudes (O(10⁴) parameters)

Many ways to choose the patches (for each spectral parameter):

patches shape

patches distribution

LiteBIRD Collaboration, PTEP, 2023

Patches from healpix nsides:

	Galactic latitude					
	Low	Medium	High			
$\beta_{\rm d}$	64	64	64			
$T_{\rm d}$	8	4	0			
β_{s}	4	2	2			

our choice

13/05/2024

LB Day @ APC

Parametric component separation

Impact of foreground residuals

LiteBIRD Collaboration, PTEP, 2023

without foreground residuals

Arianna Rizzieri

FreeBIRD

Other components separation studies

• Partition of the full sky in patches for the spectral parameter from a clustering algorithm, resulting in a more physically motivated choice of patches

More robust modeling of the foregrounds: moment expansion

Vacher+ 2022

Current studies: E-modes project paper

Characterization of CMB E Modes from LiteBIRD

Goal: complement and extend the B modes analysis of LiteBIRD Collaboration, PTEP, 2023 to E, for achieving a rendering of the entire polarization tensor from LiteBIRD

component separation residuals from instrumental noise + foregrounds

Various component separation techniques applied:

- Parametric (FGBuster, Moment Expansion, ...)
- Blind (HILC, NILC, ...)
- + galactic plane masking
- + power spectrum estimation
- + likelihood \rightarrow reionization optical depth

PySM foreground models considered:

- simple models (d1s1)
- medium complexity (*d10*,*s5*,*f1*,*a1*,*co3*)
- high complexity (d12,s7,f1,a2,co3)

Current studies: B-modes project paper

B Modes from LiteBIRD

Goal: robustness of the expected precision of the measurements on the tensor-to-scalar ratio *r* against variations in the diffuse foreground modelling and component separation techniques

1) <u>component separation</u> residuals from instrumental noise + <u>foregrounds</u> Parametric methods Blind methods Under development

	COMMANDER	FGBuster	B-SeCRET	HILC	NILC	SMICA	Moment expansion	Minimally Informed	Moment PILC	Delta-map
Simple fgs models				n N ·	r		55			
Medium complexity fgs models			F		Ó	1E				
High complexity fgs models		11	14							

Current studies: B-modes project paper

B Modes from LiteBIRD

Goal: robustness of the expected precision of the measurements on the tensor-to-scalar ratio *r* against variations in the diffuse foreground modelling and component separation techniques

2) <u>component separation</u> residuals from instrumental noise + <u>foregrounds</u> + <u>systematic effects</u>

Arianna Rizzieri

Conclusion

• We need robust component separation for LiteBIRD to achieve its scientific goal

($\delta r < 0.001$ (r=0) including statistical noise, systematic effects and component separation residuals)

• Main challenge: dealing with **spatial variability** of the foreground frequency scaling

• 5	Some work published already:	LiteBIRD Collaboration, PTEP, 2023				
		Puglisi+ 2022	Vacher+ 2022	Carones+ 2023		

• More to come: *E-mode project paper*, *B-mode project paper*

