LiteBIRD France day

13/05/2024

Instrument Performance Model

Louise Mousset for the IMo_Perf team

Instrument Model (IMo)

a versioned and consistent database to store and share instrumental parameters within the collaboration + a documentation of the conventions, and assumptions for each IMo version

Focal planes and conventions

LiteBIRD Instrument Model (IMo):

"**low-level**" parameters + errors required for predictions of the Instrumental response

"high-level" parameters required for simulations & data analysis eg: quaternions for beams, NEP deduced from instrumental design, pointings

HWP

Table 2. HFT detector model.

Parameter	Value				
Efficiency	0.75				
Absorptance	$0.15 (T_r = 0.10K)$				
Reflectance	$0.10 (T_r = 0.17K)$				

Credit: slide from S. Henrot-Versillé

LiteBIRD France day - 13/05/2024

Error budget

Main scientific driver: $\,\delta r < 0.001\,$

Noise Equivalent Power (NEP) allocation:

Total detector NEP									
Internal NEP				External NEP = v(0.32) Internal NEP					
fundamenta Photon NEP	al NEP Thermal carriers NEP	Readout NEP <√(0.22) fundamental NEP		Vib NEP 1/v5	TF NEP 1/v5	CR NEP 1/v5	Mag NEP 1/v5	EMI NEP 1/v5	

LiteBIRD France day - 13/05/2024

Instrument performance model code (IMo_Perf)

Performance code is made to provide sensitivities from instrumental parameters:

- based on a previous code that was developed first for LFT and then extended to MHFT.
- available on the collaboration GitHub: <u>https://github.com/litebird/LiteBIRD_perfo_model.git</u>
- as modular as possible so that we can easily include design update, refined model...

This code treats **statistical uncertainties**, **NOT systematic uncertainties** which are treated by other frameworks.

Main usages:

- Assess the impact of any instrument parameter on the scientific performance => See what parameter has to be improved
- Compare several designs => Improve the instrument design

LiteBIRD France day - 13/05/2024

NEP computation

LiteBIRD France day - 13/05/2024

From NEP to sensitivities and $\sigma(r)$

LiteBIRD France day - 13/05/2024

Recent improvement by E. Carinos:

The computation of the band sensitivities is made in JAX.

- => We have access to the gradient of any variable
- => Allows to see very quickly the impact of each instrument parameter

LiteBIRD France day - 13/05/2024

Additional feature: thermal heat load

- IMo_Perf is a powerful tool to guide the instrument design.
- Available to the LiteBIRD collaboration
- Connected to the Instrument Model database (IMo)
- New functionalities and design refinement are added progressively

Thank you for your attention !

LiteBIRD France day - 13/05/2024

LiteBIRD France day - 13/05/2024