

Simulations in LiteBIRD

E. Hivon (IAP)

LiteBIRD day (APC)

Simulation pipeline

- Inputs:
 - Cosmological model (CMB)
 - Sky model
 - extragalactic (consistent with CMB)
 - Galactic
 - Solar system
 - Instrument model (IMo)
 - Scanning, focal plane, beams, noises, ... + known unknowns, ...
- Code parameters:
 - Complexity knobs
 - Random sequence
- Outputs:
 - Fake observations (data streams and/or maps) with controllable level of realism for arbitrary set of detectors

Why do we need simulations ?

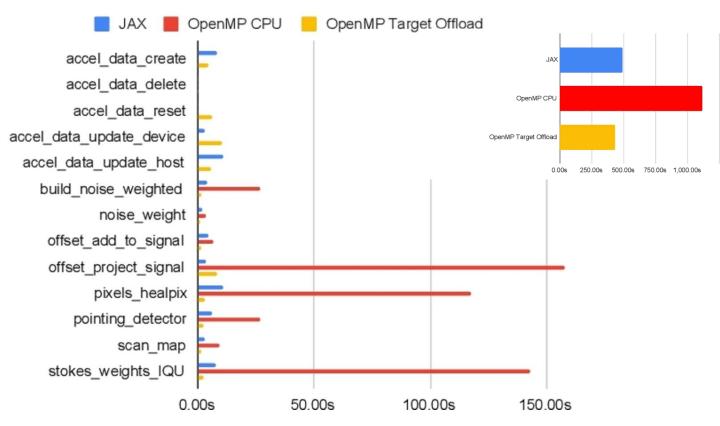
- Compare alternatives and guide choices in <u>instrumental design</u>
- Test, compare, validate, improve algorithms and implementations of the <u>analysis pipeline</u> in real life conditions (mapmaking, C(I) computation, component separation, ...)
- Propagate via Monte-Carlo up to <u>final products</u> (C(I) and cosmological parameters)
 - uncertainties on instrumental performance (gain, beam, ...),
 - non idealities (mismatch beams, rHWP imperfections, complex foregrounds ...), and interactions between systematics (eg, beams + foregrounds),
 - filtering, data alteration, ... -> effective transfer functions or transfer matrices,
 - complex noise features, (eg non-white, non-uniform, lines, ...), replace N_{pix}xN_{pix} matrices
 - sample + noise variance -> C(I) <u>covariance matrices</u>
- Calibrate <u>null-test</u> results (residual and error bars) of <u>consistency checks</u> of (many) data splits, especially for blind analysis
- Validate possible numerical / ML-based / analytical short-cuts
- Staples of likelihood-free / simulations-based approaches

What it takes to run simulations (and analyze data) ?

• Planck HFI experience

- Data volume: 52 det * 180 Hz * 3 yr = 0.8 x 10¹² detector samples ~ 3TB of raw data, (6 IQU maps @ Nside=2048 ~ 3GB of final maps)
 Yet, **300TB** of ancillary + intermediate + simulated data required (***100** input data)
- CPU time: (mostly at NERSC and CSC)
 - FFP8 simulations: 10⁶ maps (300TB) ~ 25 M cpu.h (<u>Planck 2015 XII</u>)
 - FFP10 simulations: ??
- LiteBIRD
 - Data volume: 4508 det * 19.1 Hz * 3 yr = 8 x 10¹² detector samples ~ 30TB of raw data, (22 IQU maps @ Nside=512 ~ 1GB of final maps) If *100 holds: 3PB probably required
 - Will need to optimize time *and* energy
 - See (post)PTEP simulations
- Good integration of simulation and analysis pipelines
 - Eg, to bypass TOD writing and reading

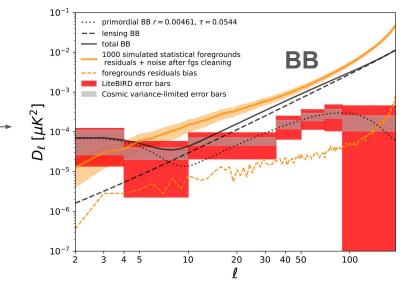
Available computing facilities


- NERSC supercomputers (US): no more free lunch in mp107, priority to CMB-S4
- Cineca supercomputers (IT): used for LBsims
- TREX @ CNES (France):
 - 16,000+ cores: 96 nodes * 128 cores (960 GB/node) + 100 nodes * 40 cores (180 GB/node)
 - 44 GPUs (Nvidia Tesla A100 and V100) (reserved to "level2" or higher users)
 - 14PB of disc space, 5 available
 - Used at <50%
 - Tempted (and already part of LiteBIRD) ?: contact L. Montier and/or M. Tristram <u>http://litebird.in2p3.fr/pmwiki/pmwiki.php/DA/Hands-onCNESHAL</u>
- Infinity @ IAP (France):
 - 4,700+ cores, 7 GPUs, overbooked, for prototyping
- CC @ IN2P3 (France)
- RURI @ JAXA (Japan) JSS3 -> JSS4
- CC @ KEK (Japan)
- + Oslo, Garching, ...

Available pipelines

- Stand alone pipelines
 - TOAST <u>https://github.com/hpc4cmb/toast</u> (public)
 - US based (LBL developers, among NERSC flagships)
 - now mostly focused on ground experiments (eg, CMB-S4)
 - Larger data volumes
 - Python front-end
 - OpenMP-C++ back-end so far,
 - now switching to full python GPU-optimized JAX (TOAST3)
 - LBsims https://github.com/litebird/litebird_sim (public)
 - Large italian involvement + external contributions
 - Designed from scratch for LiteBIRD, different data model with TOAST
 - On-going interfacing with TOAST map-maker
 - Python only
 - Both interfaced with LiteBIRD IMo <u>https://github.com/litebird/IMo_LiteBIRD</u> (private)
- Niche pipelines, modules, ...
 - Falcon (Okayama U., Japan)
 - In Julia
 - Realistic HWP simulations
 - G. Patanchon

TOAST and **JAX**



https://dl.acm.org/doi/fullHtml/10.1145/3624062.3624186

Existing/on going simulations

• PTEP (TOAST) <u>PTEP 2023 042F01</u>

- CMB + PySM + radio sources
- Gaussian beams, tophat bandpass
- \circ ~¹/₃ of detectors, 1yr of data, ideal HWP
- post-PTEP (LBsims @ CINECA) on going
 - Lensed CMB + PySM3 + orbital dipole
 - Gaussian beams, tophat bandpass
 - \circ ~¹/₃ of detectors, 1yr of data, ideal HWP
 - Scaled 1/f noise or white noise
 - Nsims = 500 realisations, w/ different noise models
 - 1 TOD + Nsims * 22 IQU (madam produced) frequency maps,
 - ~1.5M CPUh, 50 TB (slowed down by I/O in mapmaking)
- LBxCMB-S4 joint simulations for study of synergies (LBsims) on going

What can be done today ?

Data simulation

- CMB (with r and τ)
- Foregrounds:
 - From PySM
- Systematics

0

- Ephemerides,
- Orbital dipole,
- 4Pi Beams convolution (from GRASP simulations) with ducc0
- 1/f Noise, gain drift, band pass,
- rHWP, with imperfections (ongoing),
- Cosmic rays,
 - See talks by
 - Sophie
 - Guillaume (summarised by Ludo)
- ...

Data reduction

- Map making:
 - Simple binning codes,
 - TOAST3 destriper,
 - o madam,
 - mappraiser,
 - SANEPIC (Patanchon et al, <u>https://arxiv.org/abs/0711.3462</u>)
 - SRoll3 (python interface to C++ code used in Planck-HFI)

Data analysis

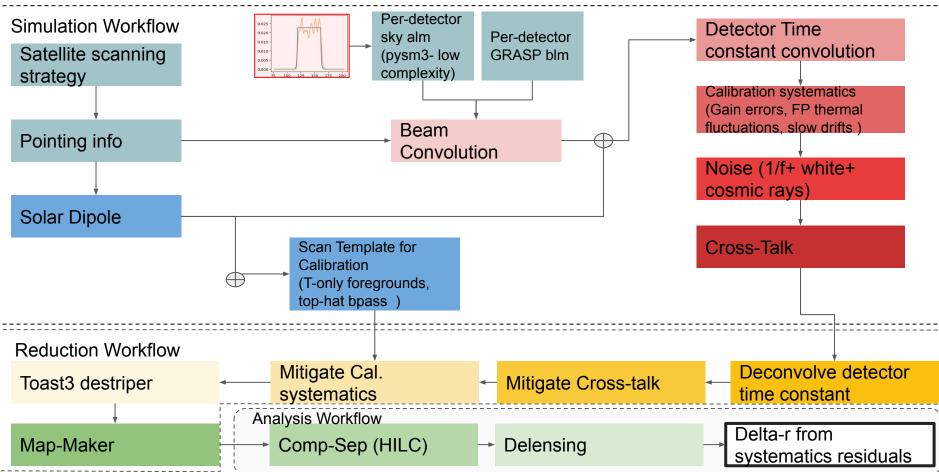
- Component separation
 - See Ariana's talk
- Delensing
 - Joint simulations with CMB-S4
- C(I) calculation and parameter estimation
 - Birefringence angle β (see Josquin's talk)

Help wanted !

- Science Ground Segment (SGS, see Ludo's talk)
 - Definition
 - Involvement
- Many open questions on achieving LiteBIRD main and secondary science goals
 - CNES Phase B0 starting early 2025
 - Simulations telecons and MaPLes (Map making, Power spectra & Likelihood algorithms) telecons on alterning Thursdays at 9AM
- Now hiring: Ingénieur d'étude en CDD pour simulations LiteBIRD / Temporary engineering position for LiteBIRD simulations <u>https://emploi.cnrs.fr/Offres/CDD/UMR7095-ERIHIV-001/Default.aspx</u>

Extra slides

What it takes to run simulations (and analyze data) ?


• Data volume

- Planck-HFI: 52 det * 180 Hz * 3 yr = 0.8 x 10¹² detector samples ~ 3TB of raw data, (6 IQU maps @ Nside=2048 ~ 3GB of final maps)
 Yet, **300TB** of ancillary + intermediate + simulated data required (*100 input data)
- SPT: 10,000 det * 152 Hz * 5 yr = 240 x 10¹² detector samples ~ 1PB of raw data, 1000 PB of disc space available
- LiteBIRD: 4508 det * 19.1 Hz * 3 yr = 8 x 10¹² detector samples ~ 30TB of raw data, (15 IQU maps @ Nside=512 ~ 0.7GB of final maps) If *100 holds: 3PB probably required

• CPU time

- Planck-HFI: (mostly at NERSC and CSC)
 - FFP8 simulations: 10⁶ maps (300TB) ~ 25 M cpu.h
 - FFP10 simulations: ??
- LiteBIRD:
 - Will need to optimize time and energy
 - See (post)PTEP simulations
- Good integration of simulation and analysis pipelines
 - Eg, to bypass TOD writing and reading

Toast 3

