GALACTIC SCIENCE WITH LITEBIRD

Jonathan Aumont IRAP, Toulouse

CMB foregrounds

13/05/24

LiteBIRD France day

CMB foregrounds

13/05/24

3

Polarization

- Galactic synchrotron emission Radio and IR point sources?
- Anomalous Microwave Emission (AME)
- CO and other molecular lines
- Cosmic Infrared background (CIB)

LiteBIRD main polarized foregrounds

Galactic synchrotron from Planck

Galactic thermal dust from Planck

LiteBIRD France day

2015 Planck

ω

LiteBIRD legacy

15 bands spanning frequencies from 34 to 448 GHz, with resolutions from 70 to 18 arcmin

Full sky maps with very-high polarization accuracy

Cosmology

Inflation

Reionization

Neutrino mass

Cosmic birefringence

Extra-galactic science

Cosmic infrared background (CIB)

13/05/24

LiteBIRD France day

$\delta r < 10^{-3}$

Crosscorrelation with Euclid

SZ distortions

Galactic science

Synchrotron, free-free, spinning dust

Galactic magnetic field

Galactic dust, star formation

Planck

LiteBIRD – Planck comparison

6

Gain in frequency coverage (15 bands vs. 7)

Gain in sensitivity (x10) over the whole frequency range

Gain in S/N(x30) from the highest frequency band

LiteBIRD – Interplay with magnetic field

No gain in bright highresolution regions

13/05/24

Exploration of mid-scale diffuse regions

LiteBIRD – Spectral gain over Planck

2022 Col.

13/05/24

				(e)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 14 > 42 GHz			Broad
· · · · · · · · · · · · · · · · · · ·	- 13 > 53 GHz			frequ
	12 > 60 GHz			bi
	- 11 > 69 GHz			degr
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 10 > 79 GHz			
	- 9 > 88 GHz			
	8 > 101 GHz Q			
	- 7 > 119 GHz	BIB	$\frac{2}{2} = 2 > 217 \text{ GHz}$	
	6 > 141 GHz	Lite		
	- 5 > 165 GHz			Expl
	4 > 199 GHz			of the
	- 3 > 238 GHz			
	- 2 > 286 GHz			Broad
	- 1 > 356 GHz			frequ
	- 0			di
10^3				large

LiteBIRD France day

LiteBIRD – Science thanks to spectral gain

• Dust grain properties

- Ferromagnetic inclusions ?
- Single versus multi-component models ?
- Comparison with Laboratory measurements
- Spectral index of synchrotron emission
- Anomalous Microwave Emission (AME)
 - Detection of polarised emission of AME
 - → New constraints on the nature of its carriers
 - Combination with C-BASS, Quijote, S-PASS datasets
- Spatial variations & line of sights effects
 - Spatial variations of grain composition ?
 - Strong coupling with modelling of 3D structure of the magnetic field

LiteBIRD – Interplay with magnetic field

Dust Emission:

- LiteBIRD sensitivity improved by a factor 10 at 400 GHz, compared to Planck. Interplay between turbulent gaz motions and magnetic field
- High sensitivity data to be compared with MHD simulations.
- Parity violation (TB Correlation): random fluctuations or generic turbulence feature ? Impact on Cosmic birefringence forecasts.

Synchrotron Emission:

- LiteBIRD sensitivity improved by a factor 5 at 40 GHz, compared to Planck. Extension of the range of scales over which the correlation between dust and synchrotron polarization is characterized.

3D modeling:

- Dust / Synchrotron correlation towards the modelling of the 3D structure of the Galactic magnetic field, in particular within the Solar neighbourhood.
- Probe 3D Galactic magnetic field in combination with PASIPHAE and Gaia data

LiteBIRD France day

LiteBIRD – Galactic science Project Study

Coordination: Jonathan Aumont & Eirik Gjerløw 40+ members from 8 countries

Goals:

- Gather people in LiteBIRD with an expertise / interest in Galactic science
- Create a group to assess the feasibility of Galactic science studies with LiteBIRD data
- Contribute quantitative forecasts on Galactic science
- Produce models and methods that could benefit the CMB *B*mode forecasts

Achievements:

- 7+ LiteBIRD project papers in discussion
- Teams formed

Countries

LiteBIRD France day

- LiteBIRD maps will provide a wealth of information on Galactic science by improving upon Planck in polarization
 - ➡ More bands
 - Improved sensitivity
 - Improved resolution in diffuse regions
- We are organizing the work to forecast the capabilities and prepare the analysis within the Galactic science project study group

12