Isotropic Cosmic Birefringence

co-leads: Alessandro Gruppuso & J.E.

Josquin Errard, May 13, 2024

The Universe is

- Homogeneous (translation symmetry)
- Isotropic (rotational symmetry)

The Universe is

- Homogeneous (translation symmetry)
- Isotropic (rotational symmetry)

what about reflection symmetry?

VS.

Parity-violating extensions of the standard electromagnetism due to the coupling between photon and a (pseudo-)scalar field, as for instance an **axion**, can be modeled with a **Chern-Simons term** [Carroll+ 1989]:

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$
Parity-violating pseudo-scalar field

Parity-violating extensions of the standard electromagnetism due to the coupling between photon and a (pseudo-)scalar field, as for instance an **axion**, can be modeled with a **Chern-Simons term** [Carroll+ 1989]:

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} \underbrace{g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}}_{\text{Parity-violating pseudo-scalar field}}$$

This term makes the phase velocities of right- and lefthanded polarisation states of photons different, leading to a rotation of the linear polarisation direction.

Parity-violating extensions of the standard electromagnetism due to the coupling between photon and a (pseudo-)scalar field, as for instance an **axion**, can be modeled with a **Chern-Simons term** [Carroll+ 1989]:

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$
Parity-violating pseudo-scalar field

This term makes the phase velocities of right- and lefthanded polarisation states of photons different, leading to a rotation of the linear polarisation direction.

Such a rotation is expected to be null in the standard Maxwellian electromagnetism, so detecting a nonzero angle different from zero would probe the existence of a **new cosmological scalar field \phi**, **possibly acting as dark matter or dark energy** [Marsh+ 2015, Ferreira+ 2020].

Parity-violating extensions of the standard electromagnetism due to the coupling between photon and a (pseudo-)scalar field, as for instance an **axion**, can be modeled with a **Chern-Simons term** [Carroll+ 1989]:

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}$$
Parity-violating pseudo-scalar field

This term makes the phase velocities of right- and lefthanded polarisation states of photons different, leading to a rotation of the linear polarisation direction.

Such a rotation is expected to be null in the standard Maxwellian electromagnetism, so detecting a nonzero angle different from zero would probe the existence of a **new cosmological scalar field \phi**, **possibly acting as dark matter or dark energy** [Marsh+ 2015, Ferreira+ 2020].

 $\beta = \frac{1}{2} g_{\phi\gamma} \int \frac{\partial \phi}{\partial t} dt$

CMB polarisation is naturally sensitive to this effect

The effect accumulates over the distance! [Harari+ 1992,Li+ 2008, Pospelov+ 2008]

Cosmic Birefringence, May 13, 2024, LiteBIRD France Day

 $E_{\ell m}^{\mathrm{cmb}}$

Cosmic Birefringence, May 13, 2024, LiteBIRD France Day

Measuring β: the challenge

We could use the polarized Galactic foreground emission as a calibrator

α

impossibility to distinguish between a genuine cosmic birefringence effect and a rotation of the detectors orientation with respect to the sky coordinates
 ➤ we could a priori only measure/constrain the sum a+β

see Sophie's talk from this morning

Cosmic Birefringence, May 13, 2024, LiteBIRD France Day

Minami et al 2019, PTEP, 083E02 Minami 2020, PTEP, 063E01 Minami, Komatsu 2020, PTEP, 103E02

We could use the polarized Galactic foreground emission as a calibrator

Observed signal is a rotation of the intrinsic CMB and Galactic foreground emissions

 $\begin{pmatrix} E^{\rm o}_{\ell m} \\ B^{\rm o}_{\ell m} \end{pmatrix} = \begin{pmatrix} \cos(2\alpha) - \sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix} \begin{pmatrix} E^{\rm fg}_{\ell m} \\ B^{\rm fg}_{\ell m} \end{pmatrix} + \begin{pmatrix} \cos(2\alpha + 2\beta) - \sin(2\alpha + 2\beta) \\ \sin(2\alpha + 2\beta) & \cos(2\alpha + 2\beta) \end{pmatrix} \begin{pmatrix} E^{\rm cmb}_{\ell m} \\ B^{\rm cmb}_{\ell m} \end{pmatrix}$

so the observed EB is $C_{\ell}^{EB,o} = \frac{\tan(4\alpha)}{2} \Big(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \Big) + \underbrace{\frac{1}{\cos(4\alpha)}}_{\approx 0?} C_{\ell}^{EB,fg} + \frac{\sin(4\beta)}{2\cos(4\alpha)} \Big(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \Big) \\ \approx 0?$

Build a Gaussian likelihood to simultaneously determine both angles

$$-2\ln\mathcal{L} = \sum_{b=1}^{N_{\text{bins}}} \left(\mathbf{A}\bar{C}_{b}^{\text{o}} - \mathbf{B}\bar{C}_{b}^{\text{cmb}}\right)^{T} \mathbf{M}_{b}^{-1} \left(\mathbf{A}\bar{C}_{b}^{\text{o}} - \mathbf{B}\bar{C}_{b}^{\text{cmb}}\right) + \sum_{b=1}^{N_{\text{bins}}} \ln|\mathbf{M}_{b}|$$

Current constraints

Minami & Komatsu, 2020, PRL, $\beta = 0.35 \pm 0.14 \text{ deg} (2.4\sigma)$ for nearly full-sky Diego-Palazuelos et al, 2022, PRL, $\beta = 0.30 \pm 0.11 \text{ deg} (2.7\sigma)$ for nearly full-sky data Eskilt & Komatsu, 2022, PRL, $\beta = 0.33 \pm 0.10 \text{ deg} (3.3\sigma)$ for nearly full-sky data

- The impact of the known instrumental systematics seems to be negligible;
- Systematic uncertainty due to the modeling of foreground EB?
- No evidence for frequency dependence of $\boldsymbol{\beta}$
 - if confirmed as cosmological, it would have profound implications for fundamental physics behind dark matter and energy!

Current constraints from galaxy surveys

Measurement of Parity-Odd Modes in the Large-Scale 4-Point Correlation Function of SDSS BOSS DR12 CMASS and LOWZ Galaxies

Jiamin Hou,^{1,2*} Zachary Slepian,^{1,3}[†] & Robert N. Cahn³

¹Department of Astronomy, University of Florida, Gainesville, FL 32611, USA

² Max-Planck-Institut für Extraterrestische Physik, Postfach 1312, Giessenbachstr., 85748 Garching, Germany

³Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Probing Parity-Violation with the Four-Point Correlation Function of BOSS Galaxies

Oliver H.E. Philcox^{1,2,*}

¹Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA ²School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA 7.1σ evidence for parity violation

2.9σ evidence for parity violation

 \rightarrow 1.9 σ after updating the covariance matrix

Precision measurement of EB

Unprecedented sensitivity High control of instrumental systematics

Wide frequency range

- high-level characterization of astrophysical contaminants
- efficient component separation

Full-sky coverage

• EB around the reionization peak probes the axions mass and can distinguish between different axion models and early dark energy models

High signal-to-noise detections of β are possible with > 20 arcmin resolutions

Frequency [GHz]

400

LiteBIRD: forecast

LiteBIRD: forecast

A forecast with different degrees of complexity (4 x 100 simulations)

Phase1: CMB (β =0) + noise + simple foregrounds (s0d0)

Phase2: CMB (β =0) + noise + complex foregrounds (s1d1)

Phase3: CMB (β =0) + noise + complex foregrounds (s1d1) + systematics (α ≠0)

Phase4: CMB ($\beta \neq 0$) + noise + complex foregrounds (s1d1) + systematics ($\alpha \neq 0$)

sky signal frequency scaling:

$$\begin{split} \mathbf{A}_{\mathrm{cmb}}(\nu,\nu_0) &= 1\\ \mathbf{A}_{\mathrm{dust}}(\nu,\nu_0,\beta_d,T_d) \propto \left(\frac{\nu}{\nu_0}\right)^{\beta_d} B_{\nu}\left(T_d\right)\\ \mathbf{A}_{\mathrm{sync}}(\nu,\nu_0,\beta_s) \propto \left(\frac{\nu}{\nu_0}\right)^{\beta_s+2} \end{split}$$

Phase	α [deg]	$\beta \; [deg]$	β_d, T_d, β_s
1	0	0.0	$\operatorname{constant}$
2	0	0.0	varying
3	random	0.0	varying
4	random	0.3	varying

Multiple Pipelines

Multiple Pipelines

D-estimator

EΒ

foreground debiasing and the extra dispersion caused by α miscalibrations

$$M_{\ell\ell'} = \langle D_\ell D_{\ell'} \rangle$$

Find local extrema in T and E anisotropies

Transform the Stokes parameters and stack peaks

$$Q_r(\theta) = -Q(\theta)\cos(2\phi) - U(\theta)\sin(2\phi)$$
$$U_r(\theta) = Q(\theta)\sin(2\phi) - U(\theta)\cos(2\phi)$$

Radial profile around peaks is sensitive to β

$$\langle U_r^T \rangle(\theta) = -\sin(2\beta) \int \frac{\ell d\ell}{2\pi} W_\ell^T W_\ell^P J_2(\ell\theta) \\\times (\bar{b_\nu} + \bar{b_\zeta}\ell^2) C_\ell^{TE}$$

$$\langle U_r^E \rangle(\theta) = -\frac{1}{2} \sin(4\beta) \int \frac{\ell d\ell}{2\pi} W_\ell^E W_\ell^P J_2(\ell\theta) \\ \times (\bar{b_\nu} + \bar{b_\zeta}\ell^2) (C_\ell^{EE} - C_\ell^{BB})$$

Minami-Komatsu technique

$$C_{\ell}^{EB,o} = \frac{1}{2} \tan(4\alpha) \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o} \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,cmb} - C_{\ell}^{BB,cmb} \right) + \frac{1}{\cos(4\alpha)} \left(C_{\ell}^{EB,s} + C_{\ell}^{EB,d} + C_{\ell}^{E_{s}B_{d}} + C_{\ell}^{E_{d}B_{s}} \right)$$

 $\alpha_{40} \ \alpha_{50} \ \alpha_{60} \ \alpha_{68a} \ \alpha_{68b} \ \alpha_{78a} \ \alpha_{78b} \ \alpha_{89a} \ \alpha_{89b} \ \alpha_{100} \ \alpha_{119} \ \alpha_{100} \ \alpha_{119} \ \alpha_{140} \ \alpha_{166} \ \alpha_{195} \ \alpha_{195} \ \alpha_{235} \ \alpha_{280} \ \alpha_{337} \ \alpha_{402} \ \alpha_{100} \ \alpha_{119} \ \alpha_{100} \ \alpha_{119} \ \alpha_{100} \ \alpha_{119} \ \alpha_{100} \ \alpha_{100}$

<True - Est. angle> [deg]

"Modified B-SeCRET"

Component separation + α + β

Amplitudes $\mathcal{A}_i \leftarrow \mathcal{P}(\mathcal{A} \mid \mathcal{B}_{i-1}, \mathcal{C}_{i-1}, d)$ Spectral parameters $\mathcal{B}_i \leftarrow \mathcal{P}(\mathcal{B} \mid \mathcal{A}_i, \mathcal{C}_{i-1}, \boldsymbol{d})$ $i' \rightarrow i+1$ **Rotation angles** $\mathcal{C}_i \leftarrow \mathcal{P}(\mathcal{C} \mid \mathcal{A}_i, \mathcal{B}_i, d)$

Gaussian priors on spectral parameters MK result as prior on rotation angles

Cosmic Birefringence, May 13, 2024, LiteBIRD France Day

"Modified FGBuster"

Component separation + α + β + r

External calibration priors from an artificial or astrophysical calibration source on some frequency channels

comparison among the pipelines

Cosmic Birefringence, May 13, 2024, LiteBIRD France Day

comparison among the pipelines

Conclusions

- LiteBIRD provides the perfect venue to confirm the current hints of $\beta \approx 0.3$ found in Planck and WMAP data.
- we are developing different complementary analysis pipelines that will allow for a β measurement that is robust against both instrumental systematics and Galactic foregrounds
- analysis pipelines have successfully overcome the different levels of complexity in the simulations

 \longrightarrow we should continue exploring more complex foregrounds and additional sources of systematics

keep an eye on the arXiv for the full forecast soon!

