LiteBIRD synergy with other projects

M.Tristram

LiteBIRD-day

Critical Factors

$$\label{eq:sensitivity} \begin{split} \text{Noise} \propto \frac{\text{``Sensitivity''}}{\text{Integration time}^{1/2}} \end{split}$$

- sensitivity better in space (no atmosphere, no ground)
- integration better in space (no sun, no moon, no weather)

rule of thumb: I det in space = I00dets on the ground

Advantage space

- Stable environment: any systematic related to the Sun, Earth (including ground and atmosphere), or Moon is lower or absent in space
- Coverage of the full sky requires multiple sites from the ground, raising many issues
- Anything related to stability and continuity of instrumentation and operations is better in space
- Current calibration of ground data is based on Planck measurements
- For the calibration of polarisation, LiteBIRD rely on ground calibration and internal EB nulling. Precise measurements of an astrophysical polarized source from the ground could extend LiteBIRD science case.
- A drawback of space is the effect of cosmic rays on direct-detection systems

Advantage space

Angular resolution

• Resolution

Beam size $\propto \frac{\lambda}{D}$

- 2 arcmin resolution is ~ 5m diameter telescope
- big telescopes are too expensive for space
- access to small scales from the ground

Advantage ground

Scanning strategy
full-sky is much easier from L2
access to large scales from space (low multipoles)

Advantage space

a powerful duo

LB-day (May 24)

Foregrounds separation

- Depends on frequency coverage, noise, calibration accuracy
- More challenging at low multipoles
 - Need more (all) sky
 - Foreground fluctuations are larger on large scales
- From the ground, observations are limited to a few discrete windows, which do not cover the foreground minimum

LB-day (May 24)

- Current analysis of ground data used dust tracers from Planck (e.g. BICEP/Keck)
- LiteBIRD will deliver Galactic foreground maps for cleaning CMB ground data (dust and synchrotron)

Primordial gravitational waves

Full Success

- $\sigma(r) < 10^{-3}$ (for r=0, no delensing)
- >5 σ observation for each bump of the BB spectrum (for r \geq 0.01)

Rationale

- Large discovery potential for 0.005 < r < 0.05
- Simplest and well-motivated R+R² "Starobinsky" model will be tested
- Clean sweep of single-field models with characteristic field variation scale of inflaton potential greater than m_{pl} [Linde, JCAP 1702 (2017) no.02, 006]

Primordial gravitational waves

Full Success

- $\sigma(r) < 10^{-3}$ (for r=0, no delensing)
- >5 σ observation for each bump of the BB spectrum (for r \geq 0.01)

only space can achieve measurement in the two bumps

LB-day (May 24)

Delensing with ground data

Extra Success

- improve $\sigma(\mathbf{r})$ with external observations
- delensing improvement to $\sigma(r)$ can be a factor ≥ 2

LB-day (May 24)

A cosmic variance limited measurement of EE on large angular scales will be an important, and guaranteed, legacy for LiteBIRD

only accessible from space

Reionization

Neutrino sector

Improvement in reionization optical depth measurement implies:

- $-\sigma(\Sigma m_{v}) = 15 \text{ meV}$
- determine neutrino hierarchy normal v.s. inverted
- measurement of minimum mass $\geq 3\sigma$ detection NH, $\geq 5\sigma$ detection for IH

complementarity with ground-based measurements

LB-day (May 24)

With frequency range from 34 to 448 GHz and access to large scales LiteBIRD will gives constraints on

- Characterisation of the foregrounds SED
- Large scale Galactic magnetic field
- Models of dust polarization grains

Synchrotron

Dust

only accessible from space

Spectral distortions

- Anisotropic CMB spectral distortions could be measured well
 - LiteBIRD forecasts comparable to PIXIE! (15 bands are many)
 - Multi-field effects or non-Bunch-Davies initial conditions
 - Spatially-varying chemical potential distributions [Pajer-Zaldarriaga 2012, Ganc-Komatsu 2012]
 - Effects on $C_{\ell}^{\mu\mu}, C_{\ell}^{\mu T}$
- Frequency Space Differential measurements for detecting any spectral distortion [Mukherjee-Silk-Wandelt 2018]
 - Use inter-frequency differences only

interesting theoretical ideas need experimental assessment:

- include I/f noise, systematic errors, etc...
- use advantages of multi-color detectors
- use "controlled imperfection" of HWP for gain calibration

Synergy with other probes

Lensing

LiteBIRD E-modes + CMB-S4 high-resolution improve our knowledge of the projected gravitational lensing produced by the large-scale structure

• Integrated Sachs-Wolf effect

improvement on ISW signal (~20%)

(galaxy survey)

how gas traces the matter in the Universe

LB-day (May 24)

