ail.
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,;/\\ Critical Factors
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High Sensitivity
Detectors

Large frequenc Statistics Mitigation and
; ; ! Control of

coverage from Space .
Systematics

Foreground oo Systematics Continuously

Sr < 0.001 Rotating HWP

Observer
bias

Focused on largest All-sky
multipole scales survey
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”

“Sensitivity

Noise i/

Infegration fime

e sensitivity better in space (no atmosphere, no ground)

e integration better in space (no sun, no moon, no weather)

rule of thumb: | det in space = |100dets on the ground

Advantage space
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Systematics

o Stable environment: any systematic related to the Sun, Earth (including
ground and atmosphere), or Moon is lower or absent in space

o Coverage of the full sky requires multiple sites from the ground, raising many
Issues

o Anything related to stability and continuity of instrumentation and
operations is better in space

o Current calibration of ground data is based on Planck measurements

o For the calibration of polarisation, LiteBIRD rely on ground calibration and
internal EB nulling. Precise measurements of an astrophysical polarized source
from the ground could extend LiteBIRD science case.

o A drawback of space is the effect of cosmic rays on direct-detection systems

Advantage space

LB-day (May 24) LiteBIRD



\Vfa :
X Angular resolution

';'e B\Q‘

o Resolution Beam size o i

D

- 2 arcmin resolution is ~ 5m diameter telescope
- big telescopes are too expensive for space

- access to small scales from the ground

Advantage ground

e Scanning strategy

Precession
angle a.

- full-sky is much easier from L2 s angd B g

o Anti-Sun direction
- access to large scales from space (low multipoles) £y

Advantage space

LB-day (May 24) LiteBIRD



a powerful duo
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;Béx Foregrounds separation

’;'e B\Q‘

o Depends on frequency coverage, noise, calibration accuracy

o More challenging at low multipoles
o Need more (all) sky
o Foreground fluctuations are larger on large scales

o From the ground, observations are limited to a few discrete windows,
which do not cover the foreground minimum
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Foregrounds

o Current analysis of ground data used dust tracers from Planck
(e.g. BICEP/Keck)

o LiteBIRD will deliver Galactic foreground maps for cleaning CMB ground data
(dust and synchrotron)

- 1.0 ~ - ' ' - - [
o I
é 0.8 _
2 i 1 Atmosphere is opaque at frequencies
£ 0.6 | above 300 GHz
O i [} [ ] [
= 0.4p Map|?|ng high frequencies
= l requires a space observatory
@ 0.2
= i
= oot/ T it
0 200 400 600 800 1000

Frequency (GHz)
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Full Success

* 5(r) < 1073 (for r=0, no delensing)
* >50 observation for each bump of the BB spectrum (for r20.01)

Rationale

- Large discovery potential for
0.005 <r <0.05

- Simplest and well-motivated R+R?
“Starobinsky’” model will be tested

- Clean sweep of single-field models
with characteristic field variation scale

of inflaton potential greater than m_
[Linde, JCAP 1702 (2017) no.02, 006]

LB-day (May 24)
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\/n : : S
>N Primordial gravitational waves

’;'e B\Q‘

Full Success
* 5(r) < 1073 (for r=0, no delensing)

LB-day (May 24)

* >50 observation for each bump of the BB spectrum (for r20.01)

Primordial tilt (n)

LiteBIRD

Primordial tilt (ns)
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\Vfa :
>~ Angular resolution

Campeti et al., JCAP (2022)
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only space can achieve measurement in the two bumps
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Delensing with ground data

Extra Success

* improve o(r) with external observations

* delensing improvement to ¢(r) can be a factor 2 2

101

Aiming at detection with >5¢ in case of
Starobinsky model

10—2

Baseline
+ delensing w/Planck CIB & WISE

Tensor-to-scalar ratio (r)
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>~% Reionization

’fe B\Q‘

A cosmic variance limited measurement of EE on large angular scales will
be an important, and guaranteed, legacy for LiteBIRD
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only accessible from space
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>~% Neutrino sector

’fe B\Q‘

Improvement in reionization optical depth measurement implies:
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> 30 detection of minimum mass
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- determine neutrino hierarchy
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complementarity with ground-based measurements
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Galactic science

With frequency range from 34 to 448 GHz and access to large scales
LiteBIRD will gives constraints on

- Characterisation of the foregrounds SED

- Large scale Galactic magnetic field

- Models of dust polarization grains

Synchrotron

only accessible from space
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;%\x Spectral distortions

’}'e B\Q‘

« Anisotropic CMB spectral distortions could be measured well

o LiteBIRD forecasts comparable to PIXIE! (15 bands are many)

o Multi-field effects or non-Bunch-Davies initial conditions
= Spatially-varying chemical potential distributions [Pajer-Zaldarriaga 2012, Ganc-Komatsu 2012]

. Effects on C*, CEllT

o Frequency Space Differential measurements for detecting any spectral
distortion [Mukherjee-Silk-VVandelt 2018]

o Use inter-frequency differences only

interesting theoretical ideas need experimental assessment:
e include |/f noise, systematic errors, etc...
e use advantages of multi-color detectors
e use "controlled imperfection” of HWP for gain calibration
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;%\x Synergy with other probes

Tep\®
* Lensing
LiteBIRD E-modes improve our knowledge of the
+ projected gravitational lensing
produced by the large-scale
CMB-S4 high-resolution S ErlCire

* Integrated Sachs-Wolf effect
improvement on ISVV signal (~20%)

* Galaxy surveys H— (i gxy

full-sky map of hot gas
(thermal SZE)

® .
3D distribution of the matter
(galaxy survey)

how gas traces the matter in the Universe
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Chile
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