

A cryogenic R&D platform for the DARWIN Experiment

Frédéric Girard **LPNHE-Paris**

NHE

DMLab 18 Oct. 2024

$XENDN \rightarrow DARWIN/XLZD$

	XENON10	XENON100	XENDNIT	
Operation period	2005-2007	2008-2016	2012-2019	
Xenon Mass	14 kg (active)	62 kg (active)	2 t (active)	
Height Diameter	15 cm 14 cm	30 cm 30 cm	96 cm 97 cm	

Frédéric Girard

XENONnT

DARWIN/XLZD

2020-2026 5.9 t (active) 8.5 t (total)

> 148 cm 133 cm

2032 40 t / 60 t (active) 50 t / 75 t (total)

260 cm / 297 cm 260 cm / 298 cm

Dual-Phase TPC

Frédéric Girard

One of the main challenges for next-generation large-scale TPCs will be the development of large electrodes with high optical transparency

One of the main challenges for next-generation large-scale TPCs will be the development of large electrodes with high optical transparency

Dual-Phase TPC

Frédéric Girard

One of the main challenges for next-generation large-scale TPCs will be the development of large electrodes with high optical transparency

Cryostat

- Vacuum insulated, double-walled
- Main cooling mode: copper belt
 - LN_2 from pressurized Dewar
 - Overflow prevention from free floating vent
 - Temperature control from heating resistor
- Secondary cooling mode: Heat Exchanger
 - Temperature control from heating resistor
- Multi-layer insulation to prevent radiative losses (not shown)

Gas Handling and Purification

- Transfer and purification of the xenon
- High-pressure side: Up to 200 bar
- Low-pressure side: 2 bar nominal, max. 3.5 bar
- Recirculation with neoprene membrane compressor
- Purifier: Nickel-based, self heating solid
 - < 1 ppb of O_2 , H_2O , CO_2 , N_2 , H_2 , CH_4 , N_2O

Entegris Xenon Purifier

MiniReStoX

- Xenon recuperation and storage
- Three nested vessels
 - Vacuum insulation + MLI
 - Liquid nitrogen (from 15 000 L reservoir)
 - Xenon (max 70 bar)
- Can be kept cold at all time during XeLab operation
 - Immediate xenon recuperation trigger, as needed

xe-Lab - 18.10.2024

MiniReStoX

- Xenon recuperation and storage
- Three nested vessels
 - Vacuum insulation + MLI
 - Liquid nitrogen (from 15 000 L reservoir)
 - Xenon (max 70 bar)
- Can be kept cold at all time during XeLab operation
 - Immediate xenon recuperation trigger, as needed

Slow Control

- Based on the Revolution Pitechnology
- Home-made code (CODESYS)
- Home-made PT100 readout board

- Python MQTT broker to pull the data
- Storage in InfluxDB database
- Data Visualization with Grafana

Data Visualization - Grafana

 $\chi e^{-Lab} - 18.10.2024$

Frédéric Girard

Slow Control Hardware

XeLab TPC

- Designed by Subatech
- Dual-phase TPC to test new electrode designs
- PTFE body (reflector)
- Stainless steel field-shaping rings
- Liquid level monitoring and control
- Hamamatsu Photosensors
 - Top: 4× 1" PMT
 - Bottom: $1 \times 2''$ multi-anode PMT

- Runs 1 and 2 with 2 bar argon
 - Not enough cooling power
- Run 3 also with 2 bar argon
- Duration: 9 days
- First liquefaction of argon
 - Demonstration of continuous, stable operation
- At 2 bar:

Frédéric Girard

- $T_{IAr} = 94.29 \text{ K}$
- $T_{IX_{P}} = 177.88 \text{ K}$
- Next step: LXe fill

Xe^{-Lab} - 18.10.2024

What's next?

- First LXe fill
 - Waiting for xenon bottle load cell components
- Installation of the dual-phase TPC
 - Parts production at Subatech
 - Completion by the end of 2024
 - First tests in XeLab expected early 2025
- Development of new electrodes
 - Subject of the next internships + theses
 - Looking for candidates!

Pancake – Freiburg im Brisgau

- Test platform for full-scale DARWIN electrodes
 - End goal of XeLab R&D
- Also used to test XENON-sized electrodes, built by KIT
- Thanks to DMLab, I could spend 2 \times 2 week in Freiburg to help with the tests
 - June 2024
 - Oct. Nov. 2024

2.7 m

Pancake – Freiburg im Brisgau

- Test platform for full-scale DARWIN electrodes
 - End goal of XeLab R&D
- Also used to test XENON-sized electrodes, built by KIT
- Thanks to DMLab, I could spend 2 \times 2 week in Freiburg to help with the tests
 - June 2024
 - Oct. Nov. 2024

$\mathsf{DARWIN} \xrightarrow{} \mathsf{XLZD}$

- As of September 2024, the XLZD consortium is now the XLZD collaboration
 - 72 institutions
 - 163 senior scientists
- XLZD detector: 60 t LXe active target
- DARWIN will continue as an R&D collaboration, working towards XLZD

Conceptual drawing of XLZD, F. Girard, LPNHE

$\mathsf{DARWIN} \to \mathsf{XLZD}$

- Multiple sites considered:
 - Laboratori Nazionali del Gran Sasso, Italy
 - Boulby Underground Laboratory, United Kingdom
 - Sanford Underground Research Facility, USA
- XLZD endorsement:
 - APPEC Mid-Term Roadmap
 - Helmholtz Roadmap
 - P5 report
 - UKRI infrastructure funds allocated for design study
 - Several national roadmaps in Europe

Conceptual drawing of XLZD at LNGS, Adrian Schwenck, KIT

LPNHE-Paris

DMLab

	Legend		
AC	Accumulator		
AV	Angle Valve		
B	Bottle		
BP	Backing Pump		
CP	Compressor		
CV	Check Valve		
FC	Flow Controller		
GV	Gas Vent		
HC	Heating Capsule		
HPMV	High-Pressure Manual Valve		
LM	Level Meter		
LNV	Liquid Nitrogen Valve		
LNPV	Liquid Nitrogen Pneumatic Valve		
MV	Manual Valve		
PF	Particulate Filter		
PG	Pressure Gauge		
PR	Pressure Reducer		
PT	Pressure Transducer		
PV	Pneumatic Valve		
RV	Relief Valve		
SV	Solenoid Valve		
TP	Turbo Pump		
TT	Temperature Transducer		

Setpoints				
CV-02 RV-03 RV-04 RV-05	N/A 70 barg 3 bar 4 bar			

- First cooldown test of Xelab in May 2024
- Inner vessel filled with 2 bar argon
 - Cheaper than xenon
- Cooling underwhelmingly poor
- Upgrades:
 - Exchange stainless steel tubing with copper tubing
 - Apply mixture of silver power (2 µm) and Apiezon N cryogenic grease (thermal paste)

 $\int_{\mathbf{X}e^{-Lab}} - 18.10.2024$

Frédéric Girard

24

Commissioning Upgrades

- First cooldown test of Xelab in May 2024
- Inner vessel filled with 2 bar argon
- Cooling underwhelmingly poor
- Upgrades:

Frédéric Girard

- Exchange stainless steel tubing with copper tubing
- Apply mixture of silver power (2 µm) and Apiezon N cryogenic grease (thermal paste)

Lab – 18.10.2024

Copper tube

Application of thermal paste

- Second cooldown test of Xelab in July 2024 (remotely because of the Olympic Games)
- Duration: 5 days
- Cooling still not great, barely good enough
- Only 5 days of test until the LN₂ was depleted
- Reached LXe temperature in 2 days

- Reduced pressure in Dewar
 - Slower LN₂ filling
 - Free floating vent bypassed, acts only as an overflow prevention
- Continuous cooling
- Increased cooling power

- As the vessel cools down, the pressure drops (noble gas)
- Some fluctuations in the temperature are hints of the production of the first drops of liquid
 - They evaporate, cooling down the bottom flange
- The pressure drops sharply, with no drastic change in temperature at the start of liquid accumulation
- Argon filled continuously for ~ 2h

Lab – 18.10.2024