News from CMOS Sensors: MIMOSIS and CE-65nm

Supported by

Bundesministerium für Bildung und Forschung

(05P19RFFC1)

Slides are courtesy of M. Deveaux

News from MIMOSIS

A. Besson, M. Deveaux, Ziad EL BITAR for the CBM-MVD collaboration

A. Altingun², Julio Andary¹, Benedict Arnoldi-Meadows¹, Ole Artz¹, Jérôme Baudot², Grégory Bertolone², Auguste Besson², Norbert Bialas¹, Roma Bugiel², Gilles Claus², Claude Colledani², Hasan Darwish^{1,2,3}, Michael Deveaux^{1,3,6}, Andrei Dorokhov², Guy Dozière², Ziad El Bitar², Ingo Fröhlich^{1,3}, Mathieu Goffe², Benedikt Gutsche¹, Fabian Hebermehl¹, Abdelkader Himmi², Christine Hu-Guo², Kimmo Jaaskelainen², Oliver Michael Keller⁶, Michal Koziel¹, Franz Matejcek¹, Jan Michel¹, Frédéric Morel², Christian Müntz¹, Hung Pham², Christian Joachim Schmidt³, Stefan Schreiber¹, Matthieu Specht², Dennis Spicker¹, Joachim Stroth^{1,3,4}, Isabelle Valin², Roland Weirch^{1,} Marc Winter⁵and Yue Zhao² ¹Goethe-Universität Frankfurt, Germany ²Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany ⁴Helmholtz Forschungsakademie Hessen für FAIR, Germany ⁵IJCLab, UMR9012 – CNRS / Université Paris-Saclay / Université de Paris, France ⁶Facility for Antiproton and Ion Research in Europe GmbH, Germany

Measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

The CBM Micro Vertex Detector

Missions for the CBM MVD:

- Low-momentum tracking.
- Conversion electron suppression.
 - \rightarrow Vector meson reconstruction.
- Hyperon reconstruction.
- Open-charm reconstruction.
- High particle rates => Max. 10 MHz p+ p 100 kHz Au+Au

HLD_HitsFast *6 364180 35.45 3.054

Mean Std Dev

	Requirements	KHz modulation ON HLD Fast hits distribution, 20.48 us bins
Spatial, time resolution	~5 µm, 5 µs	500 400
Sensor thickness	~ 50 µm	
Power dissipation	<100 mW/cm ²	0 ⁶ 30 32 34 36 38 Time
Radiation doses	7 × 10¹³ n _{eq} /cm² ~ 5 MRad	^{2.5}
Radiation gradient over sensor	~ 100%	
Heavy ion tolerance	1 kHz/cm ²	
Rate (average/ 50 µs peak)	20 / 80 MHz/cm ²	y-axis

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 x-axis [cm]

-1.5

-2

1.6

1 4

1.2

0.8

0.0

0.4

0.2

MIMOSIS R&D plan

MIMOSIS-0 (2018)

٠

٠

٠

٠

٠

٠

٠

- Demonstrate pixel concept.
- Demonstrate zero suppression.
- Demonstrate readout concept.

MIMOSIS, the sensor for the MVD (inspired by ALPIDE)

Epitaxial layer thickness: $25\mu m$, $50\mu m$ (new => reported today).

IPHC - Ziad EL BITAR

How to control 500'000 channels?

MIMOSIS integrates:

- Analog & Digital FEE
- Voltage regulators, trim DACs.
- Slow control interface.
- Data pre-processing.

. . .

MIMOSIS is an unusually complex piece of technology, also during R&D.

MIMOSIS-2 – what was changed?

Reworked blocks in MIMOSIS-2

(F. Morel @ Mimosis sensor perspectives and next steps towards the CBM-MVD https://indico.gsi.de/event/15130/)

MIMOSIS-1 and MIMOSIS 2 follow the same outside specs but:

- Major features added.
- Majority of all blocks reworked.
- \Rightarrow High risk submission

Bug example: Output driver powering issue:

Status Sept. 2023:

- 3 bugs spotted, fixes under evaluation.
- Resubmission required for full bug fix.
- Updated test plans accounting for MSIS-2 limits.

Focused ion beam (FIB):

- Ion deposit in existing ASICS allows to add/cut traces.
- May be used to correct for bugs (equivalent to soldering cables on buggy PCB).

Limitation:

- Space constraints.
- Individual ASICS only.

FIB used on 5 sensors to confirm bug repair strategy.

Sept 2023: "FIB corrected MIMOSIS-2 will plausibly allow to test a significant part of the open questions..."

Scheduled test	Test possible despite bugs?	Test result
Sensor performance	No	MIMOSIS-1 matches specs.
I2C issues (multiple)	Yes OK	
Analog output failure	Yes OK (next talk)	
Vulnerability to HV pickup	YesOK (next talk)YesQ1-2 2024 (UNILAC beamtime)	
Vulnerability to HI-impacts	Yes	Q1-2 2024 (UNILAC beamtime)
Clk triplication	Restricted	So far ok.
PLL stability	After FIB	Improved, still too much jitter
Cluster finding	After FIB	OK
Pixel to output data transfer	After FIB	ОК
Power grid (ohmic loss)	Restricted, after FIB	OK (but only few pixels)
	Validated bug fixing strategy. MIMOSIS 2.1 submitted Dec. 2023.	

Effect of heavy ion hits on electronics

Heavy ions show high d*E*/d*x* or LET:

- Scales with z^2 of the projectile => Au = 6200 M.I.P
- Bethe Bloch: "Slow" ions create higher LET than relativistic ions.

Minority charge carriers excited by ions may:

- Break transistor gates => Gate rupture
- Switch digital electronics => Bit flip
- Open unwanted conduction paths => Latch-up (like short cut, extinguish by power cycle)

Macroscopic damage by individual ion: Single Event Effect.

Ways to spot SEE:

- Gate rupture: Search for permanent failure (not observed).
- Bit flip: Write register with known date, read back, compare.
- Latch-up: Detect increase of current consumption.

Irreversible destruction

Malfunction if ignored

Thermal destruction if

ignored

Latch-up in ULTIMATE sensor G. Contin, JINST 11 C12068 (2016)

Beam test UNILAC – heavy ions and SEE

MIMOSIS-1:

Hits in DAC steering registers confuse sensor.

- 1-bit flip automatic recovery does not work.
- Need power cycle to restart.

No latch-up observed (for LET = 20 MeV cm²/mg). v

Sensor withstands 400 MHz/cm² HI (beam impact v scenario) w/o damage.

Single bit flip recovery circuits now working. => Major improvement in robustness (as hoped).

MIMOSIS-2:

Hits in DAC steering registers tolerated.

- 1-bit flip automatic recovery does work.
- May be overwhelmed (2 sync bitflips).
 - Observed at fluences ~10² above specs.
 - Recovered by reprogramming (most of the time).

Latch-up studies

Requirement for MVD:

• Must withstand LET< 35 MeV cm²/mg. (H. Darwish, PhD under preparation)

Test with MIMOSIS-1:

- Withstands LET=20 MeV cm²/mg.
- Limitation: dE/dx of Ca-ions used

Test with MIMOSIS-2 (Au ions):

- No LU for LET≲50 MeV cm²/mg.
- Some LU seen above.
- => MIMOSIS-2 meets requirements

Protection system for Latch-up (1 fast electronic fuse/sensor) likely not required.

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024

Prepare MIMOSIS-2 re-submission => MIMOSIS 2.1

Strategy: Modify only few masks out of ~30 to save costs.

- few 100 kEUR saving (needed to finance MIMOSIS-3).
- may re-wire transistors but not move/replace them. ⇒ Some issues (PLL) cannot be addressed.

Expect working sensor requiring external 320 MHz clk.

Paid extra fee for fast processing.

MIMOSIS 2.1 – The error corrected MIMOSIS-2

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.

4 diced wafers (one of each split) &

8 full wafers

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.

N-pixel (x)

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.
05.07.2024	MIMOSIS-2.1 beam telescope commissioned
12.07.2024	Sensors to be tested commissioned

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.
05.07.2024	MIMOSIS-2.1 beam telescope commissioned
12.07.2024	Sensors to be tested commissioned
14.07.2024	Transfer to DESY

Shopping of last items

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 Months delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.
05.07.2024	MIMOSIS-2.1 beam telescope commissioned
12.07.2024	Sensors to be tested commissioned
14.07.2024	Transfer to DESY
15.07.2024	8:00 Start of in-beam installation
	13:00 Safety training
	14:00 Beam on, data taking

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.
05.07.2024	MIMOSIS-2.1 beam telescope commissioned
12.07.2024	Sensors to be tested commissioned
14.07.2024	Transfer to DESY
15.07.2024	8:00 Start of in-beam installation
	13:00 Safety training
	14:00 Beam on, data taking and analysis starts

Date	Event
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.
05.07.2024	MIMOSIS-2.1 beam telescope commissioned
12.07.2024	Sensors to be tested commissioned
14.07.2024	Transfer to DESY
15.07.2024	8:00 Start of in-beam installation
	13:00 Safety training
	14:00 Beam on, data taking and analysis starts
	16:25 "MIMOSIS 2.1 Efficiency >99% (Signed by Hasan)."

Date	Event			
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024			
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.			
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.			
05.07.2024	MIMOSIS-2.1 beam telescope commissioned			Default
12.07.2024	Sensors to be tested commissioned		100	
14.07.2024	Transfer to DESY		98	Normal Sciences
15.07.2024	8:00 Start of in-beam installation		96	
	13:00 Safety training		04	MIMOSI
	14:00 Beam on	(%)	94	on site a
	16:25 "MIMOSIS 2.1 Efficiency >99% (Signed by Hasan)."	ency	92	-1V BB
19.07.2024	Beam test results shown in regular Friday meeting.	Effici	90 88 86	pStop pStop pStop pStop pStop pStop

Date	Event			
Dec. 2023	MIMOSIS 2.1 submitted. Expect return March 2024			
21.05.2024	MIMOSIS 2.1 arrives with >2 months fabrication delay in Strasbourg. Dicing incomplete.			
07.06.2024	Dicing corrected, DACs tested, Sensors sense radiation.			
05.07.2024	MIMOSIS-2.1 beam telescope commissioned			
12.07.2024	Sensors to be tested commissioned		100	
14.07.2024	Transfer to DESY		98	
15.07.2024	8:00 Start of in-beam installation		96	
	13:00 Safety training		94	
	14:00 Beam on	(%)	02	
	16:25 "MIMOSIS 2.1 Efficiency >99% (Signed by Hasan)."	iency	00	
19.07.2024	Beam test results shown in regular Friday meeting.	Effici	90	
26.08.2024	First preliminary analysis: 50 slides of plots.		88	
			86	

Pixel performance: p-stop AC (most likely pixel for MVD)

Observations:

- MIMOSIS-2.1 reaches lower threshold than MIMOSIS-1.
- MIMOSIS-2.1 reaches even(!) higher efficiency than MiSIS-1.
- Best performance: Novel 50µm epitaxial layer with p-stop.
- Dark occupancy marginal for all sensors (noisy pixels NOT masked).

Cluster multiplicity

tolerance t.b.c).

Pixel performance: Example (most likely pixel for MVD)

Observations:

- MIMOSIS-2.1 and MIMOSIS-1 show mostly same resolution for 25 µm (expected, discrepancy to be studied).
- MIMOSIS-2.1 50 µm reaches better resolution (as hoped).

Preliminary conclusion:

- Novel 50 µm p-stop appears most promising.
- Need to study radiation tolerance before concluding.

Open ends and next steps

MIMOSIS 2.1 works as expected (so far):

- Novel 50µm p-stop sensor shows further improved performance.
- Full readout chain validated.
- Tolerance to SEE now established (gate rupture, Latch-up, slow control).
- \Rightarrow Sensor fulfills requirements

Open ends:

- Internal PLL still not fixed.
 - Expert review planned for Q4/2024.
 - Worst case: May have to distribute 320 MHz clk.
- Yield not satisfactory under study with tools available since 2024.
 - Worst case: Additional money and effort to buy/test more wafers.
- Impact of SEE on data taking not yet rigorously excluded Need beam test.

Next steps:

- Beam tests (starting this week, Q1/2025) to understand sensors better.
- Participation to mCBM (test in real environment).
- Test with realistic LV-distribution.

MIMOSIS R&D back on track. Program in schedule (presented at ECE in Apr. 2024). Expect MIMOSIS-3 (final sensor) by end 2025. Test team:

M. Dx Ben Kay O. Benedikt Oliver Arnoldi Voss Gutsche Keller

Auguste	Hasan	Mathieu	Ali Al-	Mathieu
Besson	Darwish	Goffe	tingun	Specht

...Julio Andary, Gilles Claus, Kimmo Jaaskelainen...

News from CE65

E. Ploerer,^{*a,b*,1} H. Baba^{*c*} J. Baudot^{*d*} A. Besson^{*d*} S. Bugiel^{*d*} T. Chujo^{*e*} C. Colledani^{*d*} A. Dorokhov^{*d*} Z. El Bitar^{*d*} M. Goffe^{*d*} T. Gunji^{*c*} C. Hu-Guo^{*d*} A. Ilg^{*b*} K. Jaaskelainen^{*d*} T. Katsuno^{*f*} A. Kluge^{*g*} A. Kostina^{*h*} A. Kumar^{*d*} A. Lorenzetti^{*b*} A. Macchiolo^{*b*} M. Mager^{*g*} J. Park^{*e*} S. Sakai^{*e*} S. Senyukov^{*d*} H. Shamas^{*d*} D. Shibata^{*e*} W. Snoeys^{*g*} P. Stanek^{*h*} M. Suljic^{*g*} L. Tomasek^{*h*} I. Valin^{*d*} Y. Yamaguchi^{*f*} and the ALICE Collaboration

^aVrije Universiteit Brussel, 1050 Brussels, Belgium
 ^bUniversity of Zurich, 8057 Zurich, Switzerland
 ^cUniversity of Tokyo, Tokyo 113-8654, Japan
 ^dUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
 ^eUniversity of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
 ^fHiroshima University, Higashi-Hiroshima 739-8526, Japan
 ^gCERN, CH-1211 Geneva 23, Switzerland
 ^hCzech Technical University in Prague, 160 00 Prague, Czech Republic

TPSco 65 nm: Benefits and Specificities

- Benefits: 65 nm vs 180 nm
 - Better spatial resolution due to smaller feature size
 - Larger wafers: 300 mm vs 200 mm => final sensor: 27x9 cm²
 - Lower power supply: 1.2 V vs 1.8 V => Low power consumption
 - Lower material budget: thinner sensitive layer (~ 10 um)
- Provides 2D stitching
- 7 metal layers
- Process modifications for full depletion:
 - Standard (no modifications)
 - Modified (low dose n-type implant)
 - Modified with gap (low dose n-type implant with gaps)

ALICE DETECTOR LS3 UPGRADE: ITS2 (180 nm) → ITS3 (65 nm)

R. Ricci, PSD 2023

ITS2: (S.Beolé, iWoRiD 2022)

- 7 layers of MAPS
- TJ 180 nm CMOS
- 12.5 Giga pixels
- Pixel size: 27×29 µm²
- Water cooling
- + 0.3 % X_0 / inner layer

ITS3

(M. Šuljić, iWoRiD 2023)

- 4 outer layers of ITS2
- 3 new fully cylindrical inner layers
 - Sensor size up to 27×9
 cm
 - Thickness <= 50 µm
 - No FPCs
 - Air cooling in active area
- 0.05 % X₀ / inner layer

- Submitted in December 2020
- Main goals:
 - Learn technology features
 - Characterize charge collection
 - Validate radiation tolerance
- Each reticle (12×16 mm²):
 - 10 transistor test structures (3×1.5 mm²)
 - 60 chips (1.5×1.5 mm²)
 - Analogue blocks
 - Digital blocks
 - Pixel prototype chips: APTS, CE65, DPTS

Circuit Exploratoire – CE- 65

- 2 matrix sizes
 - 64×32 with 15 µm pitch
 - 48×32 matrix with 25 µm pitch
- Rolling shutter readout (50 µs integration time)
- 3 in-pixel architectures:
 - AC-coupled amplifier
 - DC-coupled amplifier
 - Source follower
- 4 chip variants:
 - Standard process 15 µm pitch
 - Modified process 15 µm pitch
 - Modified process with gaps 15 µm pitch
 - Standard process 25 µm pitch
- Fabrication in September 2021
- Presented results from CERN PS beam test : May 2022

CE-65 nm variants: pixel pitch and process

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu m$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_gap	$15\mu m$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15\mu m$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu \mathrm{m}$	48×32	AC/16, DC/16, SF/16

Beam Test Setup

Telescope:

Reference Arms : 4 ALPIDE planes for track reconstruction

DUT : CE65 TRG : DPTS

Test beam:

May 2022 at CERN-PS

Data acquisition: EUDAQ2 Event reconstruction algorithm and data analysis framework: Corryvreckan

Noise run-Beam run: correlated double sampling method (CDS)

Pixel size impact

Process Modification Impact

Process Modification: Charge Sharing

Charge sharing (std) > Charge sharing (mod)

Process Modification : Spatial Resolution

Residual (std) < Residual (mod)

- AC-coupled
- Three processes (STD, GAP, BLANKET)
- Three pixel pitch values (15 um, 18 um, 22.5 um)
- Pixel arrangement

РСВ	Geo	Process	Pitch(um)	HV(V)	Sp. Res.(um) (telescope resolution subtracted)
10	SQ	GAP	22.5	10	~5.1
02	SQ	GAP	18	10	~4.1
19	SQ	GAP	15	10	~3.2
18	SQ	STD	22.5	10	~2.4
23	SQ	STD	18	10	~1.8
06	SQ	STD	15	10	~1.3

Telescope resolution: ~2.1um (Calculated from https://mmager.web.cern.ch/telescope/tracking.html)

Digitization

What is required from a sensor?

- Fast Readout \rightarrow Digital Readout
- Low spatial resolution \rightarrow Analog Output
- Radiation tolerance...
- etc

Is there any trade-off that preserves the spatial resolution without sacrificing the readout speed? What if we use two bits for digitization, three or maybe four instead of 1 bit?

Digitization* : seed pixel signal – 2 bits examples

Charge distribution of seed pixels for associated clusters

*PhD Gaëlle SADOWSKI

Residual in global X

Residual in global Y

*PhD Gaëlle SADOWSKI

IPHC - Ziad EL BITAR

Digitization*: effect of Nbits

*PhD Gaëlle SADOWSKI

Digitization: Effect of threshold value on the position residuals

*PhD Gaëlle SADOWSKI

- MIMOSIS sensor is being continuously improved
- 65 nm Technology is being scrutinized
 - ✓ Impact of pixel pitch
 - ✓ Impact of the process (std, gap, ...)
 - ✓ Impact of pixel geometry
- Digitization is on progress

Thanks for your attention