

Optimizing Laser-Plasma Accelerators through Machine Learning K. Cassou, V. Kubytskyi, <u>M. Lenivenko</u> - CNRS/IJClab M. Fuchs - KIT

Test facility for laser-plasma injector optimisation towards RF control reliability

In the context of advanced accelerator high quality beam laser plasma injector (LPI) for EuPRAXIA [1] preparatory technical design phase and future high gradient accelerator R&D at IJClab [2]: 10 Hz **200MeV** LPI test facility to improve quality and stability of e- beam generated by laser-plasma accelerator.

[1] Assmann, R. W. et al. EuPRAXIA Conceptual Design Report. Eur. Phys. J. Spec. Top. 229, 3675–4284 (2020).
[2] pallas.ijclab.in2p3.fr

Research and development lines :

- advanced laser control
- development of plasma targetry => plasma cell
- electron beam control and transport

For these we need modern data and control system.

To achieve it we do sophisticated modeling of target, PIC, and electron beam transport.

Context for French - German plasma acceleration:

Several common interest in laser-plasma accelerator development between German and French IN2P3 groups:

- IJClab DESY/KIT: laser-plasma injector development
 - KIT: 50 MeV laser-plasma injector @10 Hz for cSTART[1]
 - PETRA-IV: laser-plasma injector prototype [2]
- DESY lasy library, LASY also advance laser control

In 2024 CNRS International PhD grant application (MITI2024) between IJClab and KIT (Pr. M. Fuchs) with the support of the DMlab : "*Optimising laser-plasma accelerators through Machine Learning*" ... granted

... and here i'm starting my PhD 🚀

[1]: N. Ray et al. Laser-plasma injector for an electron storage ring, IPAC24 (2024) DOI:10.18429/JACoW-IPAC2024-MOPR44
 [2]: S. Antipov et al., Design of a prototype laser-plasma injector for an electron synchrotron, PRAB, 24, 11 (2024)

20

10

-10

-20

-30

-20

 (μm)

- Electron acceleration using plasma Wakefield
- 1000 times higher acceleration field than in conventional accelerators
- Laser-plasma acceleration consists of many nonlinear processes
- Main challenges:
 - Shot-to-shot stability
 - Beam quality at all aspects at the same time

Image taken from R. Lehe PhD Thesis https://pastel.hal.science/tel-01088398v1

-10

 $z-ct~(\mu m)$

0

 $\times ~10^{18} ~{\rm cm}$

ML optimization in Laser-plasma

Neural Network Model prediction of beam quality Prediction accuracy is around 80%

M. Kirchen et al. 2021 https://doi.org/10.1103/PhysRevLett.126.174801 Beam charge tuning curve at 250 MeV

PALLAS

60

-60

0.10

З

30

20

∆z_{foc}

. V_{H2,3} (ml/s)

S. Jalas et al. 2023

https://doi.org/10.1103/PhysRevAccelBeams.26.071302

PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 084601 (2023)

Bayesian optimization of laser-plasma accelerators assisted by reduced physical models

A. Ferran Pousa⁰,^{1,*} S. Jalas⁰,¹ M. Kirchen⁰,¹ A. Martinez de la Ossa⁰,¹ M. Thévenet⁰,¹ S. Hudson⁰,² J. Larson⁰,² A. Huebl⁰,³ J.-L. Vay⁰,³ and R. Lehe³
 ¹Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
 ²Argonne National Laboratory, Lemont, Illinois 60439, USA
 ³Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 3 January 2023; accepted 10 July 2023; published 15 August 2023)

Usage of Bayesian optimization to decrease computing time

A. Ferran Pousa et al. 2023

https://doi.org/10.1103/PhysRevAccelBeams.26.084601

REVIEW

Data-driven science and machine learning methods in laser-plasma physics

Andreas Döpp^{1,2}, Christoph Eberle¹, Sunny Howard¹,², Faran Irshad¹, Jinpu Lin¹, and Matthew Streeter³

¹Ludwig-Maximilians-Universität München, Garching, Germany

 ²Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
 ³School for Mathematics and Physics, Queen's University Belfast, Belfast, UK (Received 30 November 2022; revised 30 March 2023; accepted 24 May 2023)

Detailed review on ML methods in laser-plasma physics

A. Döpp. et al. 2022 http://dx.doi.org/10.1017/hpl.2023.47

Particle-in-Cell(PIC) simulations

- Maxwell-Vlasov set of equations are calculated during laser propagation
- In PALLAS PIC simulations are performed with **Smilei** code

Simplified low-fidelity simulation takes 30 minutes on 240 cores. High-fidelity simulation can take a week.

J. Derouillat et al. Comput. Phys. Commun. 222, 351-373 (2018)

PALLAS simulation parameters

Simulation inputs:

- Laser focal position (x_of) [-400, 1700] μm
- Normalized vector potential (a_0) laser intensity [1.1, 1.8]
- Dopant percentage (c_N2) [0.2, 11]%

Gas pressure (p_1) [11, 100] mbar

UNIVERSITE UNIVERSITE

CNrs

PALLAS

- Using PIC simulations, we generated a large dataset of approximately **12,000 simulations**
- Simulation data is used to train ML models that predict key electron bunch characteristics (e.g., energy spread, emittance)
- We employ also Bayesian Optimization (Xopt library[1]) directly with simulations to test different target profiles
- For the electron beam propagation simulations we use RF-Track[2]

[1] R. Roussel et al. https://doi.org/10.18429/JACoW-IPAC2023-THPL164[2] Andrea Latina, CERN

PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 091302 (2023)

Random scan optimization of a laser-plasma electron injector based on fast particle-in-cell simulations

P. Drobniak[®],^{*} E. Baynard, C. Bruni[®], K. Cassou[®], C. Guyot, G. Kane, S. Kazamias, V. Kubytskyi, N. Lericheux[®], B. Lucas, and M. Pittman Laboratoire de Physique des 2 Infinis Irène Joliot-Curie–IJCLab–UMR 9012 CNRS Université Paris Saclay, 91405 Orsay cedex, France

F. Massimo

Laboratoire de Physique des Gaz et des Plasmas—LPGP—UMR 8578, CNRS, Université Paris-Saclay, 91405 Orsay, France

A. Beck[©] and A. Specka[©] Laboratoire Leprince-Ringuet—LLR—UMR, 7638 CNRS Ecole polytechnique, 91128 Palaiseau cedex, France

P. Nghiem[®] and D. Minenna[®] CEA-Irfu, Centre de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Drobniak, P. et al. Phys. Rev. Accel. Beams 26, 091302 (2023)

Pareto Front as the result of MOBO search for 3 different energies 150, 200 and 250 MeV within a \pm 10 MeV

G. Kane, PhD student PALLAS https://doi.org/10.48550/arXiv.2408.15845 5 Best energy spectra after single objective Bayesian optimization for optimized target profile

J. Serhal, PhD student PALLAS

The inverse model was trained using Neural Networks

Input Parameters:

- Focal position x_of
- Bunch characteristics

Outputs:

• Simulation inputs except x_of

Inverse problem

- Focal position causes non-unique solutions problem
- In the case of a big amount of inputs, accuracy can reach **99%**
- With 4 inputs and focal position as scan parameter:
 - Accuracy **89.4%**
 - Validation for the bunch energy
 - Can not be validated below 10pC

The aim is to optimize laser-plasma acceleration process with these steps:

- Surrogate models improvement on the simulation data : Extend models to phase-space distribution (seed for start to end simulations)
- Surrogate model training on the experimental data
- Inverse model improvement
- On-fly experiment optimization with Bayesian optimisation
- Beam transport optimization for electron beam characterisation

Additionally we work with Geant4 colleagues on introducing our ML model as a source in Geant4 simulation.

Thank you for attention!

