Higgsed Millicharge particles

Status report

Luc Darmé Felix Kahlhoefer Patrick Foldenauer

17/10/2024

Project overview

- Happy to be a new scientific project board at DMLab with Felix !
- Our general common research axis will be Feebly Interacting Particles
- Ongoing project, started with Patrick Foldenauer on millicharge particles
	- \rightarrow Today is more of a status report than a full presentation ...

All millicharge particles are born equal, but…

Pure Millicharge

 χ , massive Dirac fermion with tiny hypercharge Y_{χ}

MCP : New fermions with tiny electric charge Q

All millicharge particles are born equal, but…

Kinetic mixing Millicharge

New unbroken $U(1)_D$, kinetic mixing ϵ_B + χ with dark charge

+ dark QED acting on

Pure Millicharge

 χ , massive Dirac fermion with tiny hypercharge Y_{χ}

MCP : New fermions with tiny electric charge Q

All millicharge particles are born equal, but…

Kinetic mixing Millicharge Millicharge Higgsed Millicharge

New unbroken $U(1)_D$, kinetic mixing ϵ_R + χ with dark charge

+ dark QED acting on

New broken $U(1)_D$, dark Higgs with tiny hypercharge $Y_s + \chi$ with dark charge

Pure Millicharge

 χ , massive Dirac fermion with tiny hypercharge Y_{γ}

MCP : New fermions with tiny electric charge Q

+ massive dark photon + EW effects

Accelerator searches are in full swing

• Accelerator experiments sensitive to millicharges as small as 10-4

 \rightarrow much weaker bounds for heavier MCPs

• For couplings in this range, MCPs can be efficiently produced in the early universe and stellar cores

• Are these parameter regions consistent with astrophysics/cosmology ?

Astrohpysical and cosmological constraints on MCPs

MeV-range : SN1987 cooling

- For $Q > 10^{-5}$ MCPs are efficiently trapped in the SN core with a mean free path smaller than neutrinos
- Negligible contribution to cooling and heat transport
- Stellar cooling constraints only apply to MCPs with mass below 100 keV

!! Highly dependent on dark sector structures !!

Relativistic degrees of freedom

- MCPs can thermalise extremely easily in the early universe
	- \rightarrow Q > 10⁻⁹ is enough
- For masses below 10 MeV, these particles are still (semi-)relativisitic at neutrino decoupling

Relativistic degrees of freedom

- MCPs can thermalise extremely easily in the early universe
	- \rightarrow Q > 10⁻⁹ is enough
- For masses below 10 MeV, these particles are still (semi-)relativisitic at neutrino decoupling
- \rightarrow Significant contribution to the total energy density (and hence the expansion rate)
- \rightarrow Robustly excluded by BBN measurements Davidson et al., 1999

MCP relic density : freeze-out

• Since they are stable and thermalised, can they be DM ?

 \rightarrow For heavier MCP masses, the particles become Boltzmann-suppressed and freeze out

 \rightarrow For Q \sim 10⁻⁴ - 10⁻³ MCPs could be all of DM

MCP relic density : freeze-out

Pure millicharge

• Since they are stable and thermalised, can they be DM ?

 \rightarrow For heavier MCP masses, the particles become Boltzmann-suppressed and freeze out

 \rightarrow For Q \sim 10⁻⁴ - 10⁻³ MCPs could be all of DM

• Problem: such scenario leads to strong CMB constraints

 \rightarrow Dominant limit comes from requiring DM decoupling at the time of baryon-photon recombination

Berlin et al., arXiv:1803.02804

Can MCPs actually be dark matter ?

- Various papers have pointed out that millicharged dark matter experiences plasma instabilities
	- \rightarrow Mostly the product of having a long-range interaction available …
- Extremely strong constraints on the charge of dark matter from the Bullet Cluster

Cruz & McQinn, arXiv:2202.12464 Lasenby, arXiv:2007.00667 Medvedev & Loeb, arXiv:2406.15750

Suppressing the MCP abundance (I)

• Clearly, we need ensure a low aboundance of MCPs to open a collider-reachable parameter space

Suppressing the MCP abundance (I)

- Clearly, we need ensure a low aboundance of MCPs to open a collider-reachable parameter space
- Possible solution: Modification of standard cosmology
- Example: Low reheating temperature \rightarrow Exponential suppression of MCP abundance if their mass is greater than ${\mathsf T}_{\sf RH}$

Overproduction Bounds for "Pure" mCP

Also include CMB limits from earlier on

Gan & Tsai, arXiv:2308.07951

Suppressing the MCP abundance (II)

• Alternative avenue: use additional dark sector states (dark photon, dark Higgs boson) as additional annihilation channels to deplete MCP abundance

Suppressing the MCP abundance (II)

Kinetic mixing millicharge

- Alternative avenue: use additional dark sector states (dark photon, dark Higgs boson) as additional annihilation channels to deplete MCP abundance
- Challenge: Lighter states need to decay into SM to avoid reappearance of ΔN_{eff} constraint
	- \rightarrow Prediction of additional light (and longlived?) particles
- Relevant parameter space opens for accelerator searches !

Direct detection constraints?

- The evolution of a cosmological population of MCPs depends on many factors
	- Diffusion in magnetic fields
	- Expulsion through supernova shocks
	- Collapse into disk
- Rock overburden may attenuate the flux of MCPs in experiments
- In non-minimal models, a large selfinteraction component may arise
- \rightarrow Calculation of direct detection constraints highly non-trivial

Dunsky et al., arXiv:1812.11116

Building millicharge particles dark sectors

Kinetically mixed millicharge

• We use a new *unbroken* $U(1)_D$ symmetry along with a "kinetic" mixing" term

 \rightarrow Could be loop generated, or seen as a convenient way of expressing that the $U(1)_D$ current has a small hypercharge component

$$
\mathcal{L}_{A'} = -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \left[\frac{1}{2} \frac{\varepsilon}{\cos \theta_w} B_{\mu\nu} F'^{\mu\nu} \right]
$$

Kinetically mixed millicharge

• We use a new *unbroken* $U(1)_D$ symmetry along with a "kinetic" mixing" term

 \rightarrow Could be loop generated, or seen as a convenient way of expressing that the $U(1)_D$ current has a small hypercharge component

$$
\mathcal{L}_{A'} = -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{1}{2} \frac{\varepsilon}{\cos \theta_w} B_{\mu\nu} F'^{\mu\nu}
$$

• We then re-define the gauge bosons to get a properly normalised fields

 \rightarrow We actually have a SO(2) redefinition freedom afterwards since both the photon and the dark photon are massless

$$
\begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ X_{\mu} \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -\frac{c_{\theta} \epsilon_B}{\sqrt{1-\epsilon_B^2}} \\ 0 & 1 & \frac{s_{\theta} \epsilon_B}{\sqrt{1-\epsilon_B^2}} \\ 0 & 0 & \frac{1}{\sqrt{1-\epsilon_B^2}} \end{pmatrix} \begin{pmatrix} A_{\mu} \\ Z_{\mu} \\ X_{\mu} \end{pmatrix}
$$

Two (equivalent) choices

• We are thus left with two equivalent descriptions of the interactions

The standard « Dark photon » convention (which is similar to the massive case)

$$
\mathcal{L} \subset ej^{em}_{\mu} A_{\mu} + (g_X j^X_{\mu} - c_W \epsilon_B j^{em}_{\mu}) X^{\mu}
$$

The usual « millicharge » convention

$$
\mathcal{L} \subset (ej_{\mu}^{em} - g_X c_W \epsilon_B j_{\mu}^X) A_{\mu} + g_X j_{\mu}^X X^{\mu}
$$

Two (equivalent) choices

• We are thus left with two equivalent descriptions of the interactions

The standard « Dark photon » convention (which is similar to the massive case)

$$
\mathcal{L} \subset ej^{em}_{\mu} A_{\mu} + (g_X j^X_{\mu} - c_W \epsilon_B j^{em}_{\mu}) X^{\mu}
$$

The usual « millicharge » convention

$$
\mathcal{L} \subset (ej_{\mu}^{em} - g_X c_W \epsilon_B j_{\mu}^X) A_{\mu} + g_X j_{\mu}^X X^{\mu}
$$

• In both cases the dark photon does NOT decouple from the physics of the problem since it couples directly to the millicharge particles.

 \rightarrow Thus the millicharge relics created using this mechanism have in any case a extra « dark QED » interaction that may dramatically affect their evolution

A massive dark photon: higgsed millicharge

- If we give a mass to the dark photon, we cannot rotate to the « millicharge convention » and we have a zero-charge light DM model
- Idea: we can use a new dark Higgs singlet, with dark charge q_D AND a small hypercharge q_Y

A massive dark photon: higgsed millicharge

- If we give a mass to the dark photon, we cannot rotate to the « millicharge convention » and we have a zero-charge light DM model
- Idea: we can use a new dark Higgs singlet, with dark charge q_D AND a small hypercharge q_Y

Kinetic mixing term
\n
$$
\mathcal{L}_{A'} = -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{1}{2} \frac{\varepsilon}{\cos \theta_w} B_{\mu\nu} F'^{\mu\nu}
$$
\n
$$
+ (D^{\mu} S)^* (D_{\mu} S) + \mu_S^2 |S|^2 - \frac{\lambda_S}{2} |S|^4
$$

(suppose for now the dark charges chosen to avoid dark Yukawa coupling)

Dark Higgs potential

Precision constraints

- A new Higgs scalar singlet with non-zero hypercharge q_y is an opendoor to EW precision physics problems …
	- \rightarrow We expect to have to take $v_S \ll v_{EW}$ et $q_V \ll 1$
	- \rightarrow More complex Higgs sectors (or dark-charged SM-like Higgs doublets) may have more relaxed constraints

As a first estimate,
we can take the shift
$$
\rho_0 - 1 = \frac{m_W^2}{m_Z^2 c_W^2} - 1 \sim -6q_Y^2 \frac{v_S^2}{v_{EW}^2}
$$
 $\frac{m_X q_Y}{m_Z q_D} \leq O(0.005)$
in the Z boson mass

Precision constraints

- A new Higgs scalar singlet with non-zero hypercharge q_y is an opendoor to EW precision physics problems …
	- \rightarrow We expect to have to take $v_S \ll v_{EW}$ et $q_Y \ll 1$
	- \rightarrow More complex Higgs sectors (or dark-charged SM-like Higgs doublets) may have more relaxed constraints

As a first estimate,
we can take the shift
$$
\rho_0 - 1 = \frac{m_W^2}{m_Z^2 c_W^2} - 1 \sim -6q_Y^2 \frac{v_S^2}{v_{EW}^2} \longrightarrow \frac{m_X q_Y}{m_Z q_D} \leq O(0.005)
$$

in the Z boson mass

• We thus need either a light dark photon or a small ratio $\delta =$ q_Y q_D

 \rightarrow One still needs to tune the « millicharge ratio » : δ

• Millicharge particles are a direct prediction of modified EW-breaking sector

The resulting currents

• In the mass basis we finally obtain the gauge interactions of the form

$$
\mathcal{L}_{\text{int}} = -(A^\mu, Z^\mu, Z^{\prime\mu}) \; J^{\text{phys}}_\mu
$$

• If the dark photon mass is much smaller than the Z mass we get : *Millicharge generation I*^{phys} = $\begin{pmatrix} \frac{\epsilon_{(J_\mu)}}{s_\theta \epsilon_B g_x j^x_\mu + g_z j^z_\mu} \\ g_x j^x_\mu + \frac{e^2 \delta}{g_x} - c_\theta e \epsilon_B \end{pmatrix} j^{em}_\mu$ *Kinetic mixing* \boldsymbol{i} em *Dark sector*

Summary

- For accelerator searches to actually be relevant, we must ensure that the MCP relic aboundance is depleted
	- \rightarrow Preferentially via something that can further decay into SM particles and not dark radiation
- Complete constructions based on dark Higgs mechanisms could work \rightarrow Copious signatures at accelerators since the dark sector is richer \rightarrow They however do bring quite a lot of additional constraints to be fully explored and still feature the tuning of a small charge.
	- \rightarrow Relic aboundance currently being estimated to check if the density of MCP can be sufficiently depleted

Backup

Direct detection constraints?

- Direct detection experiments place strong constraints even on the interactions of dark matter subcomponents
- Necessary to deplete abundance by many orders of magnitude?

No CMB limits for smaller relic fraction

• CMB constraints at recombination falls off very quickly if relic density smaller the

Millicharged Dark Matter Fraction $f_{DM} = 0.01$ 10^{-3} Relic Density SLAC 10^{-4} **EDGES** Alle ann. 10^{-5} ϵ 10^{-6} ΔN_{eff} 10^{-7} **SN1987A** 10^{-8} 10^2 $10³$ $10⁰$ $10¹$

 $m_{\chi}[\text{MeV}]$