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Gravitational-waves (GW) in GR

• Consequence of general relativity

• Oscillatory small perturbation of the metric

• Speed of light 

• 2 transverse polarizations 

• Produced by acceleration of the mass quadrupole
moment 

h ~ 10-21
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Detectors/projects and science goals
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Gravitational-wave observatory network 
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Triple detection – 14 August 2017

60 deg2

BBH 25 and 30 
solar masses 
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Detections so far by LIGO-Virgo-KAGRA

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of 
the Third Observing Run; LIGO-Virgo-KAGRA collaborations, https://arxiv.org/abs/2111.03606
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Detections and online candidates so far by 
LIGO-Virgo-KAGRA

Online candidates 7
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New objects, new 
populations

Same objects 
observed in a new 
way

Alerts for 
electromagnetic 
observatories 

Why GW with (ground-based) 
detectors science?  
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New tests of 
gravity

New 
cosmological 

measurements 

Study of extreme states of 
matter

Populations of 
compact objects

Why GW with (ground-based) 
detectors science?  



Joseph H.Taylor Jr Source: www.NSF.gov

Interferometric detectors

• Concept/ideas: Gertsenshtein and V. I. Pustovoit (1962), Pirani (1962)

• Unpublished work by Weber and Forward (Weber’s student), 
foreground for Forward experiment in Malibù 

• First prototype: E. Moss, L. R. Miller, and R. L. Forward (1971)  
~ 10-14 mHz-1/2

• R. Weiss (1972) – realistic study of the noises  10



Fabry-Perot cavities
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Credit Virgo

Bulding blocks: mirrors
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Bulding blocks Mirror = substrate + coating
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Credit: LMA, www.lma.in2p3.fr 
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• Fabry-Perot cavities: amplify the length-to-phase
transduction

• Drawback: works only at resonance

Bulding blocks: Fabry-Perot cavities 
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Fig. 9.10 Frequency response function of a Fabry–Pérot cavity to gravitational waves
(cavity length of 3 km and Finesse of 157). The response of a single-bounce beam is shown
together for comparison: 3-km and 300-km round-trips by the dashed and dotted curves,
respectively.

The round-trip phase change (expressed as travel time change) of the1

photon, caused by gravitational waves, can then be written as2

∆t =
2L

c
+

1

2

∫ t

t− 2L
c

h+(t
′)dt′. (9.41)

The second term represents the effect caused by gravitational waves. The3

frequency response to gravitational waves is investigated by substituting the4

Fourier transformation of h+(t),5

h+(t) =

∫ ∞

−∞
h+(ω)e

iωtdω, (9.42)

into the second term of Equation (9.41). The phase change due to the6

gravitational waves is given by:7

δφGR = ΩlaserδtGR =

∫ ∞

−∞
HRT(ω)h+(ω)e

iωtdω, (9.43)

where HRT(ω) is the response of the single-round-trip laser beam to8

gravitational waves with an angular frequency of ω, written by9

HRT(ω) =
Ωlaser

ω
sin γ e−iγ , (9.44)



Seismic and 
gravity 
gradient 
noise
Geophysics

Quantum noise
Quantum mechanics

Thermal noise
Thermodynamics

Advanced Virgo sensitivity curve
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The real sensitivity curve

Sensitivity of the Advanced LIGO detectors at the beginning of 
gravitational wave astronomy
D. V. Martynov et al. Phys. Rev. D 93, 112004 – (2016) 16



GW150914
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Energy in GW 

Luminosity
18

GW150914



Summary of the results

• First detection of gravitational-waves 
• First test of gravitational-wave polarisation 
• Gravitational waves travel at the speed-of-light 
• Tests of the emission at higher harmonics of GW 
• Tests of GR in strong field regime

• First observations of a NS-NS merger 
• First observations of BH-BH mergers  
• A new population of BH with high masses 
• First measurements on NS tidal deformability 
• Link between GRB and neutron star mergers 
• Kilonova powered by binary NS merger

• Alternative measurement of Hubble constant
• Speed of gravity à consequences on gravity alternative theories 19
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GW170817: Binary neutron star merger

GW170817: Observation of 
Gravitational Waves from a Binary 
Neutron Star Inspiral, B.P.Abbott, Phys. 
Rev. Lett. 119, 161101 (2017) 



The galaxy identification and the kilonova
GW170817: Observation of 
Gravitational Waves from a Binary 
Neutron Star Inspiral, B.P.Abbott, Phys. 
Rev. Lett. 119, 161101 (2017) 

https://ziggy.ucolick.org/sss17a/

Properties of the Binary Neutron Star 
Merger GW170817, B. P. Abbott et al., 
Phys. Rev. X 9, 011001 (2019)
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Ground based GW detectors: possible roadmap 

2
2

•A# 

•Virgo_nEXT

Decade 2030

•Cosmic Explorer 

•EinsteinTelescope

Current infrastructures New infrastructures



Einstein Telescope (ET)
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≥ 10km

Corner halls
depth about
200m



ET: a long path
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Artist: Eddie Anaya (Cal State Fullerton)

40 km and 20 km L-shaped surface observatories
10x sensitivity of today’s observatories (Advanced LIGO+)
Global network together with Einstein Telescope
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Observation performance of ET & CE

• BBH up to z~50-100
• 105 BBH/year

• Masses 𝑀𝑇≿103𝑀Θ

• BNS to z~2
• 105 BNS/year
• Possibly O(10-100)/year with e.m.

counterpart

• High SNR
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ET Observational Science in a nutshell
ASTROPHYSICS
• Black hole properties

• origin (stellar vs. primordial)
• evolution, demography

• Neutron star properties
• interior structure (QCD at ultra-high densities,

exotic states of matter)
• demography

• Multi-band and -messenger astronomy
• joint GW/EM observations (GRB, kilonova,...)
• multiband GW detection (LISA)
• neutrinos

• Detection of new astrophysical sources
• core collapse supernovae
• isolated neutron stars
• stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY
• The  nature of compact objects

• near-horizon physics
• tests of no-hair theorem
• exotic compact objects

• Tests of  General Relativity
• post-Newtonian expansion
• strong field regime

• Dark matter
• primordial BHs
• axion clouds, dark matter accreting on 

compact objects
• Dark energy and modifications of gravity on 

cosmological scales
• dark energy equation of state
• modified GW propagation

• Stochastic backgrounds of cosmological
origin

• inflation, phase transitions, cosmic strings
27



GW190521: LIGO-Virgo sensitivity to the BBH merger

• Higher masses 
correspond to lower 
frequency GW 
emission
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Why low frequency focus?

(Top) Kip Thorne; (Bottom) B. P. Abbott et al.; 
adapted by APS/Carin Cain



Low frequency: Multi-messenger astronomy
• If we are able to cumulate enough SNR before the merging phase, we can trigger 

e.m. observations before the emission of photons
• Keyword: low frequency sensitivity:
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ET key elements
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• Wide frequency range
• Massive black holes (LF focus)
• Localisation capability
• (more) Uniform sky coverage
• Polarisation disentanglement
• High Reliability (high duty 

cycle)
• High SNR

• Xylophone (multi-
interferometer) Design

• Underground
• Cryogenic
• Triangular shape 

(2011)
• Multi-detector design
• Longer arms

Requirements Design Specifications

˜10km
≥15km

˜200m



Underground location
Pro

• Access to the low frequency:
• 2-10Hz for ET
• Reduction of the seismic and Newtonian Noise
• Suppression of the atmospheric Newtonian 

Noise and of the wind impact
• Reduction of the anthropogenic noise 

• Magnetic
• Acoustic
• Vibration

• Easier compatibility with the urbanization 
of the hosting region
• Europe is generally a strongly urbanized 

continent

• Landscape impact

Cons

• Cost
• Challenging civil engineering
• Time needed to build it
• Limited possibility to upgrade the civil 

infrastructure in a medium-long term 
timeline

• More difficult operating environment 
in all the observatory phases 
(construction, integration, 
commissioning, maintenance and 
upgrade)
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ET geometry debate: Δ or (two) L
In the last two of years, the collaboration started the evaluation of the best configuration for ET,
considering the alternative of two L configuration (as LIGO, Cosmic Explorer) to maximize the
science return and reduce risks.
Since 2011 (CDS, triangle configuration) the situation drastically changed:
q First detections, GTWC-3 catalog → BH population → new evolution models;
q Science case developed;
q Know-how with advanced (L) detectors;
q International scenario (+ Cosmic Explorer in US);
q Two candidate sites strongly supported (and a potential third site…).
The collaboration is analyzing both configurations: optimizing science return, differential risk
assessment.
First results on the science return published in Marica Branchesi et al JCAP07(2023)068:
The 2L 15 km geometry shows an improved science return in a relevant number of science
targets
A preliminary differential risk analysis, provided by a specific committee, is under elaboration

3
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Challenging 
engineering

ET Enabling 
Technologies
• The multi-

interferometer 
approach asks for two 
parallel technology 
developments: 

• ET-LF:
• Underground
• Cryogenics
• Silicon (Sapphire) test masses
• Large test masses
• New coatings
• New laser wavelength 
• Seismic suspensions
• Frequency dependent 

squeezing

• ET-HF:
• High power laser
• Large test masses
• New coatings
• Thermal compensation
• Frequency dependent 

squeezing 33

New 
technology in 
cryo-cooling

New 
technology in 

optics

New laser 
technology

High precision 
mechanics and 

low noise 
controls

High quality 
opto-

electronics and 
new controls

Evolved laser 
technology

Evolved 
technology in 

optics

Highly 
innovative 

adaptive optics

High quality 
opto-

electronics and 
new controls



ET: large scale and complex infrastructure

Credit: A.Freise, 2020 XI ET Symposium 34



Challenges in 
Cryo-cooling
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ET operative temperature ~10K

Key issues
• Acoustic and vibration noises
• Laser absorption and heat extraction
• Cleanliness and contamination
• Cooling time (large masses, 

commissioning time, …)
• Infrastructures
• Technology (cryo-fluids or cryo-coolers)
• Materials
• Safety



Low 
Frequency 

special focus
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Credits: A.Freise

• Low noise site
• Underground 

infrastructure
• 17m tall seismic 

filtering 
suspensions

• Large impact 
on cavern 
engineering 
and costs

• R&D in active-
passive filtering 
systems and 
seismic sensors
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ET candidate sites

• Two sites officially candidate to host ET:
• EMR EUregio, border region between 

Nederland, Belgium and Germany
• Sardinia (Lula area, Barbagia)

• A third potential site is located in Saxony 
(Lusatia), still not official

• Overall site evaluation is a complex task 
depending on:

• Geophysical and environmental quality
• Financial and organization aspects
• Services, infrastructures



Summary
• Gravitational astronomy started (> 200 detections and candidates)
• Huge science case for 3rd generation observatories
• ET timeline is under review, but grosso modo:

• ET science case (Blue Book) will be updated in 2024, early 2025
• We expect to define geometry, site(s) and roughly evaluate the cost of the civil 

infrastructures within the 2026
• In the same time window, the future ET legal entity should be defined
• We started to work on the ET Technical Design Report and a preliminary, iterative 

document should be initiated in the next months and drafted in one year 
• Funding

• Large funding O(≤ 10!€) promised by the Italian and the Dutch Governments
• O (≤ 10"€) investment aggregated in the two sites for the candidature and the 

development of the enabling technologies
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The Einstein Telescope Collaboration

• ET member database

ET Member‘s affiliation map
40

• 91 Research Units 
• 1722 members (21/09/2024)
• Total:  252 Institutions

in 30 Countries


