

1

Einstein Telescope

Matteo Barsuglia

On behalf of ET Collaboration

Many slides from Michele Punturo (ET spokesperson) Gravitational-waves (GW) in GR

- Consequence of general relativity
- Oscillatory small perturbation of the metric
- Speed of light
- 2 transverse polarizations
- Produced by acceleration of the mass quadrupole moment

$$h_{ij}(t) = \frac{2}{r} \frac{G}{c^4} \ddot{Q}_{ij}(t - r/c) \qquad \qquad \mathcal{L} = \epsilon \frac{c^5}{G} \left(\frac{R_S}{R}\right)^2 \left(\frac{v}{c}\right)^6$$

h ~ 10⁻²¹

Detectors/projects and science goals

Gravitational-wave observatory network

Triple detection – 14 August 2017

Detections so far by LIGO-Virgo-KAGRA

GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run; LIGO-Virgo-KAGRA collaborations, https://arxiv.org/abs/2111.03606

Detections and online candidates so far by LIGO-Virgo-KAGRA

Why GW with (ground-based) detectors science?

Why GW with (ground-based) detectors science?

Interferometric detectors

- Concept/ideas: Gertsenshtein and V. I. Pustovoit (1962), Pirani (1962)
- Unpublished work by Weber and Forward (Weber's student), foreground for Forward experiment in Malibù
- First prototype: E. Moss, L. R. Miller, and R. L. Forward (1971) $\sim 10^{-14} \text{ mHz}^{-1/2}$
- R. Weiss (1972) realistic study of the noises

Fabry-Perot cavities

Bulding blocks Mirror = substrate + coating

Credit: LMA, www.lma.in2p3.fr

Bulding blocks: Fabry-Perot cavities

- Fabry-Perot cavities: amplify the length-to-phase transduction
- Drawback: works only at resonance

Advanced Virgo sensitivity curve

The real sensitivity curve

Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy D. V. Martynov et al. Phys. Rev. D **93**, 112004 – (2016)

GW150914

Primary black hole mass	$36^{+5}_{-4} {M}_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05\\-0.07}$
Luminosity distance	$410^{+160}_{-180} { m Mpc}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$

Energy in GW Luminosity

$$3.0^{+0.5}_{-0.5} M_{\odot} c^2$$

 $3.6^{+0.5}_{-0.4} \times 10^{56} \text{ erg/s}$

18

Summary of the results

- First detection of gravitational-waves
- First test of gravitational-wave polarisation
- Gravitational waves travel at the speed-of-light
- Tests of the emission at higher harmonics of GW
- Tests of GR in strong field regime
- First observations of a NS-NS merger
- First observations of BH-BH mergers
- A new population of BH with high masses
- First measurements on NS tidal deformability
- Link between GRB and neutron star mergers
- Kilonova powered by binary NS merger
- Alternative measurement of Hubble constant
- Speed of gravity → consequences on gravity alternative theories

GW170817: Binary neutron star merger

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, B.P.Abbott, Phys. Rev. Lett. 119, 161101 (2017)

The galaxy identification and the kilonova

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, B.P.Abbott, Phys. Rev. Lett. 119, 161101 (2017)

Properties of the Binary Neutron Star Merger GW170817, B. P. Abbott et al., Phys. Rev. X 9, 011001 (2019)

ckilpatrick 4:59 PM @foley found something sending you a screenshot

foley 4:59 PM wow!

https://ziggy.ucolick.org/sss17a/

Ground based GW detectors: possible roadmap

ET: a long path

Observation performance of ET & CE

- BBH up to z~50-100
- 10⁵ BBH/year
 - Masses $M_T \gtrsim 10^3 M_{\odot}$
- BNS to z~2
 - 10⁵ BNS/year
 - Possibly O(10-100)/year with e.m. counterpart
- High SNR

ET Observational Science in a nutshell

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

- The nature of compact objects
 - near-horizon physics
 - tests of no-hair theorem
 - exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter
 - primordial BHs
 - axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation
- Stochastic backgrounds of cosmological origin
 - inflation, phase transitions, cosmic strings

GW190521: LIGO-Virgo sensitivity to the BBH merger

Low frequency: Multi-messenger astronomy

- If we are able to cumulate enough SNR before the merging phase, we can trigger e.m. observations before the emission of photons
- Keyword: low frequency sensitivity:

ET key elements

Requirements

- Wide frequency range
- Massive black holes (LF focus)
- Localisation capability
- (more) Uniform sky coverage
- Polarisation disentanglement
- High Reliability (high duty cycle)
- High SNR

Design Specifications

- Xylophone (multiinterferometer) Design
- Underground
- Cryogenic
- Triangular shape (2011)
- Multi-detector design
- Longer arms

Underground location

- Access to the low frequency:
 - 2-10Hz for ET
 - Reduction of the seismic and Newtonian Noise
 - Suppression of the atmospheric Newtonian Noise and of the wind impact
 - Reduction of the anthropogenic noise
 - Magnetic
 - Acoustic
 - Vibration
- Easier compatibility with the urbanization of the hosting region
 - Europe is generally a strongly urbanized continent
- Landscape impact

Cons

- Cost
- Challenging civil engineering
- Time needed to build it
- Limited possibility to upgrade the civil infrastructure in a medium-long term timeline
- More difficult operating environment in all the observatory phases (construction, integration, commissioning, maintenance and upgrade)

EINSTEIN

FLESCOPE

E.

ET geometry debate: Δ or (two) L

In the last two of years, the collaboration started the evaluation of the best configuration for ET, considering the alternative of two L configuration (as LIGO, Cosmic Explorer) to maximize the science return and reduce risks.

Since 2011 (CDS, triangle configuration) the situation drastically changed:

 \Box First detections, GTWC-3 catalog \rightarrow BH population \rightarrow new evolution models;

□ Science case developed;

INFN

- □ Know-how with advanced (L) detectors;
- □ International scenario (+ Cosmic Explorer in US);
- Two candidate sites strongly supported (and a potential third site...).

The collaboration is analyzing both configurations: **optimizing science return**, **differential risk assessment**.

First results on the science return published in Marica Branchesi et al JCAP07(2023)068:

The 2L 15 km geometry shows an improved science return in a relevant, number of science targets

A preliminary differential risk analysis, provided by a specific committee, is under elaboration

ΈΤ

Challenging engineering New technology in cryo-cooling New technology in optics	ET Enabling Technologies • The multi- interferometer approach asks for two parallel technology developments:	Parameter Arm length Input power (after IMC) Arm power Temperature Mirror material Mirror diameter / thickness Mirror masses Laser wavelength SR-phase (rad) SR transmittance Quantum noise suppression Filter cavities Squeezing level Beam shape	ET-HF 10 km 500 W 3 MW 290 K fused silica 62 cm / 30 cm 200 kg 1064 nm tuned (0.0) 10 % freq. dep. squeez. 1×300 m 10 dB (effective) TEM ₀₀	ET-LF 10 km 3 W 18 kW 10-20 K silicon 45 cm/ 57 cm 211 kg 1550 nm detuned (0.b) 20 % freq. dep. squeez. 2×1.0 km 10 dB (effective) TEM ₀₀	E T EINSTEIN TELESCOPE
New laser technology	 Underground Cryogenics Silicon (Sapphire) test r 	Beam radius Scatter loss per surface Seismic isolation Seismic (for $f > 1$ Hz) Gravity gradient subtraction	12.0 cm 37 ppm SA, 8 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ none	9 cm 37 ppm mod SA, 17 m tall $5 \cdot 10^{-10} \text{ m/} f^2$ factor of a few	Evolved technology in optics
High precision mechanics and low noise controls	 Large test masses New coatings New laser wavelength Seismic suspensions 	 ET-HF: High po Large te 	wer laser est masses		Highly innovative adaptive optics
opto- electronics and new controls	Frequency dependent squeezing	 New co Therma Frequer squeezi 	atings I compensat ncy depende ng	tion ent	High quality opto- electronics and new contr <u>ols</u>

Challenges in Cryo-cooling

ET operative temperature ~10K

Key issues

- Acoustic and vibration noises
- Laser absorption and heat extraction
- Cleanliness and contamination
- Cooling time (large masses, commissioning time, ...)
- Infrastructures
- Technology (cryo-fluids or cryo-coolers)
- Materials
- Safety

Low Frequency special focus

- Low noise site
- Underground infrastructure
- 17m tall seismic filtering suspensions
 - Large impact on cavern engineering and costs
 - R&D in activepassive filtering systems and seismic sensors

Credits: A.Freise

Image: Conor Mow-Lowry

ET candidate sites

- Two sites officially candidate to host ET:
 - EMR EUregio, border region between Nederland, Belgium and Germany
 - Sardinia (Lula area, Barbagia)
- A third potential site is located in Saxony (Lusatia), still not official
- Overall site evaluation is a complex task depending on:
 - Geophysical and environmental quality
 - Financial and organization aspects
 - Services, infrastructures

Summary

- Gravitational astronomy started (> 200 detections and candidates)
- Huge science case for 3rd generation observatories
- ET timeline is under review, but grosso modo:
 - ET science case (Blue Book) will be updated in 2024, early 2025
 - We expect to define geometry, site(s) and roughly evaluate the cost of the civil infrastructures within the 2026
 - In the same time window, the future ET legal entity should be defined
 - We started to work on the ET Technical Design Report and a preliminary, iterative document should be initiated in the next months and drafted in one year
- Funding
 - Large funding $O(\leq 10^9 \in)$ promised by the Italian and the Dutch Governments
 - O (≤ 10⁸€) investment aggregated in the two sites for the candidature and the development of the enabling technologies

The Einstein Telescope Collaboration

- 91 Research Units
- 1722 members (21/09/2024)
- Total: 252 Institutions
 in 30 Countries

ET member database

