SRG/eROSITA

COSMOLOGICAL RESULTS FROM THE FIRST eROSITA ALL SKY SURVEY

0.3-2.3 keV - RGB

E. ARTIS on behalf of the eROSITA Clusters & Cosmology group

19 March 2024

MAX PLANCK INSTITUTE FOR EXTRATERRESTRIAL PHYSICS

Galaxy clusters:

- 85 % dark matter
- 13 % hot gas
- 2% galaxies

Credits : TNG simulations

300 Mpc

CLUSTER ABUNDANCE AS A COSMOLOGICAL PROBE

CLUSTER ABUNDANCE AS A COSMOLOGICAL PROBE

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Abdalla et al., 2022

CLUSTER ABUNDANCE AS A COSMOLOGICAL PROBE

CLUSTER ABUNDANCE AS A COSMOLOGICAL PROBE

Early times

Late times

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

Cluster abundance probe redshift and scale ranges complementary to other probes

If discrepancies are to arise, it is important that they are tested in these different regimes

eROSITA X-RAY TELESCOP ON SRG

ROentgen **S**urvey with an

Imaging Telescope Array

X-ray all-sky survey in **4**

years (8x6 month surveys)

Expected lifetime > 7

years

Sensitive to 0.2 - 10 keV

band

sensitive than ROSAT

Area @1keV:

5 × XMM-Newton 100 × Chandra ACIS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Credit : E. Bulbul

eROSITA X-RAY TELESCOP ON SRG

ROentgen **S**urvey with an

Imaging Telescope Array

X-ray all-sky survey in **4**

years (8x6 month surveys)

Expected lifetime > 7

years

Sensitive to 0.2 - 10 keV

band

sensitive than ROSAT

Area @1keV:

5 × XMM-Newton 100 × Chandra ACIS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Credit : E. Bulbul

eROSITA X-RAY TELESCOP ON SRG

ROentgen **S**urvey with an

Imaging Telescope Array

X-ray all-sky survey in **4**

years (8x6 month surveys)

Expected lifetime > 7

years

Sensitive to 0.2 - 10 keV

band

sensitive than ROSAT

Area @1keV:

5 × XMM-Newton 100 × Chandra ACIS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Credit : E. Bulbul

eROSITA SO FAR

Credit : E. Bulbul

eROSITA SO FAR

Credit : E. Bulbul

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Cosmological results from eRASS1 only

THE eRASS1 CLUSTER CATALOG

Credit : E. Bulbul

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Bulbul et al., 2024

OPTICAL FOLLOW-UP WITH DESI LEGACY DR9 & 10

LS grz image of a cluster overlaid with eRASS1 X-ray contours

12,247 clusters with redshift measurement 86% purity

Clean the catalog

Get the photometric redshifts

Get an additional mass proxy

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Richness vs velocity dispersion from a subsample of the catalog

Kluge et al., 2024

THE eRASS1 CLUSTER CATALOG

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Bulbul et al., 2024

THE eRASS1 CLUSTER SELECTION FUNCTION

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Clerc et al., 2024

Depends on the count rates, exposure times, hydrogen column density and background

Quantity fitted on eRASS1 simulations

THE eRASS1 CLUSTER SELECTION FUNCTION

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Clerc et al., 2024

The model is tested with eFEDS as a reference catalog

THE eRASS1 CLUSTER CATALOG

Ghirardini, Bulbul, EA et al., 2024

- 5,263 cluster candidates
- Total effective area: $12.8 \text{k} \text{deg}^2$
- 95% purity

THE eRASS1 CLUSTER CATALOG

WEAK LENSING MASS CALIBRATION

- Calibrate the $C_{\rm R} M$ and λM relations
- Dark energy Survey (DES) Grandis et al., 2024
 - 2201 tangential shears
- **Kilo Degree Survey (KIDS)** Kleinebreil et al., 2024
 - 96 tangential shears
- > Hyper Supreme Cam Survey (HSC) Chiu et al., 2024
 - 236 tangential shears

Cosmological results from the first eROSITA All Sky Survey (eRASS1)

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Grandis et al., 2024

Each individual shear profile is directly integrated in the cluster abundance likelihood

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Grandis et al., 2024

Each individual shear profile is directly integrated in the cluster abundance likelihood

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Each individual shear profile is directly integrated in the cluster abundance likelihood

MIXTURE MODEL: REMOVING THE CONTAMINATION FRACTION Ghirardini, Bulbul, EA et al., 2024

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

0.8

We account for AGN contamination and noise fluctuation. The fraction of these objects is fitted in the global likelihood

OVERVIEW : eRASS1 CLUSTER ABUNDANCE PIPELINE

Parameter	Units	Description	Prior	
• Cosmology				
$\Omega_{ m m}$	-	Mean matter density at present time	$\mathcal{U}(0.05, 0.95)$	
$\log_{10} A_s$	-	Amplitude of the primordial power spectrum	U(-10, -8)	
H_0	$\frac{\frac{km}{s}}{Mpc}$	Hubble expansion rate at present time	N(67.77, 0.6)	
$\Omega_{ m b}$	-	Mean baryon density at present time	$\mathcal{U}(0.046, 0.052)$	
n_s	-	Spectra index of the primordial power spectrum	U(0.92, 1.0)	
w_0	-	Dark energy equation of state. Fixed to -1 in ACDM	U(-2.5, -0.33)	
$\sum m_{ u}$	eV	Summed neutrino masses. Fixed to 0 eV in ACDM	$\mathcal{U}(0,1)$	
• X-ray sca	ling relat	tion		
A_X	-	Normalization of the $M - C_R$ scaling relation	U(0.01, 3)	
B_X	-	Mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(0.1,5)$	
D_X	-	Luminosity distance evolution of the $M - C_R$ scaling relation	Fixed to -2	
E_X	-	Scale factor evolution of the $M - C_R$ scaling relation	Fixed to 2	
F_X	-	Redshift evolution of the mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
G_X	-	Redshift evolution of the normalization of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
σ_X	-	Intrinsic scatter of the $M - C_R$ scaling relation	U(0.05, 2)	
• Weak lens	sing mas	s calibration		
$A_{ m WL}$	-	Scatter in the weak lensing bias from the first principal component	<i>N</i> (0, 1)	
$B_{ m WL}$	-	Scatter in the weak lensing bias from the second principal component	<i>N</i> (0, 1)	
$C_{ m WL}$	-	Standardize mass slope of the weak lensing bias	<i>N</i> (0, 1)	
$D_{ m WL}$	-	Redshift dependent intrinsic scatter in the weak lensing bias	<i>N</i> (0, 1)	
$ ho_{M_{\mathrm{WL}},C_R}$	-	Intrinsic correlation between weak lensing mass and count rate	U(-0.9, 0.9)	
Richness	mass cal	ibration		
$\log A_{\lambda}$	-	Normalization of the $M - \lambda$ scaling relation	U(1.4, 6)	
B_{λ}	-	Mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(0,2)$	
C_{λ}	-	Redshift evolution of the normalization of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
D_{λ}	-	Redshift evolution of the mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
σ_{λ}	-	Intrinsic scatter of the $M - \lambda$ scaling relation	U(0.05, 2)	
ρ_{λ,C_R}	-	Intrinsic correlation between richness and count rate	U(-0.9, 0.9)	
Contamin	ation mo	odeling		
$f_{\rm AGN}$	-	Fraction of AGN contaminants in the extended source sample	U(0, 0.1)	
$f_{\rm RS}$	-	Fraction of RS contaminants in the extended source sample	U(0, 0.15)	
Redshift uncertainty				
σ_z	-	Relative error on the measured redshift	$\mathcal{TN}(0.0050, 0.0011, 0, 1)$	
b_z	-	Systematic bias in our redshift estimate	N(1.005, 0.037)	
c_z	-	Fraction of objects for which we measure a shifted redshift	$\mathcal{TN}(0.0013, 0.0010, 0, 1)$	
$c_{shift,z}$	-	Amount of redshift shift for c_z fraction of objects	U(-0.1, 0.1)	

Parameter	Units	Description	Prior	
Cosmolog	gy			
$\Omega_{ m m}$	-	Mean matter density at present time	U(0.05, 0.95)	
$\log_{10}A_s$	-	Amplitude of the primordial power spectrum	U(-10, -8)	
H_0	$\frac{\frac{km}{s}}{Mpc}$	Hubble expansion rate at present time	N(67.77, 0.6)	
$\Omega_{ m b}$	-	Mean baryon density at present time	$\mathcal{U}(0.046, 0.052)$	
n_s	-	Spectra index of the primordial power spectrum	U(0.92, 1.0)	
w_0	-	Dark energy equation of state. Fixed to -1 in ACDM	U(-2.5, -0.33)	
$\sum m_{ u}$	eV	Summed neutrino masses. Fixed to 0 eV in ACDM	$\mathcal{U}(0,1)$	
• X-ray sca	ling rela	tion		
A_X	-	Normalization of the $M - C_R$ scaling relation	U(0.01, 3)	
B_X	-	Mass slope of the $M - C_R$ scaling relation	U(0.1, 5)	
D_X	-	Luminosity distance evolution of the $M - C_R$ scaling relation	Fixed to -2	
E_X	-	Scale factor evolution of the $M - C_R$ scaling relation	Fixed to 2	
F_X	-	Redshift evolution of the mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
G_X	-	Redshift evolution of the normalization of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
σ_X	-	Intrinsic scatter of the $M - C_R$ scaling relation	U(0.05, 2)	
• Weak len	sing mas	s calibration		
$A_{ m WL}$	-	Scatter in the weak lensing bias from the first principal component	<i>N</i> (0, 1)	
$B_{ m WL}$	-	Scatter in the weak lensing bias from the second principal component	<i>N</i> (0, 1)	
$C_{ m WL}$	-	Standardize mass slope of the weak lensing bias	<i>N</i> (0, 1)	
$D_{ m WL}$	-	Redshift dependent intrinsic scatter in the weak lensing bias	<i>N</i> (0, 1)	
$ ho_{M_{\mathrm{WL}},C_R}$	-	Intrinsic correlation between weak lensing mass and count rate	U(-0.9, 0.9)	
• Richness	mass cal	ibration		
$\log A_{\lambda}$	-	Normalization of the $M - \lambda$ scaling relation	U(1.4, 6)	
B_{λ}	-	Mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(0,2)$	
C_{λ}	-	Redshift evolution of the normalization of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
D_λ	-	Redshift evolution of the mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
σ_{λ}	-	Intrinsic scatter of the $M - \lambda$ scaling relation	U(0.05, 2)	
$ ho_{\lambda,C_R}$	-	Intrinsic correlation between richness and count rate	U(-0.9, 0.9)	
Contamination modeling				
$f_{\rm AGN}$	-	Fraction of AGN contaminants in the extended source sample	$\mathcal{U}(0,0.1)$	
$f_{\rm RS}$	-	Fraction of RS contaminants in the extended source sample	U(0, 0.15)	
Redshift uncertainty				
σ_z	-	Relative error on the measured redshift	$\mathcal{TN}(0.0050, 0.0011, 0, 1)$	
b_z	-	Systematic bias in our redshift estimate	N(1.005, 0.037)	
c_z	-	Fraction of objects for which we measure a shifted redshift	$\mathcal{TN}(0.0013, 0.0010, 0, 1)$	
$C_{shift,z}$	-	Amount of redshift shift for c_z fraction of objects	U(-0.1, 0.1)	

Parameter	Units	Description	Prior	
Cosmolog	gy			
$\Omega_{ m m}$	-	Mean matter density at present time	U(0.05, 0.95)	
$\log_{10}A_s$	-	Amplitude of the primordial power spectrum	U(-10, -8)	
H_0	$\frac{\frac{km}{s}}{Mpc}$	Hubble expansion rate at present time	N(67.77, 0.6)	
$\Omega_{ m b}$	-	Mean baryon density at present time	$\mathcal{U}(0.046, 0.052)$	
n_s	-	Spectra index of the primordial power spectrum	U(0.92, 1.0)	
w ₀	-	Dark energy equation of state. Fixed to -1 in ACDM	U(-2.5, -0.33)	
$\sum m_{ u}$	eV	Summed neutrino masses. Fixed to 0 eV in ACDM	$\mathcal{U}(0,1)$	
• X-ray sca	ling rela	tion		
A_X	-	Normalization of the $M - C_R$ scaling relation	U(0.01, 3)	
B_X	-	Mass slope of the $M - C_R$ scaling relation	U(0.1, 5)	
D_X	-	Luminosity distance evolution of the $M - C_R$ scaling relation	Fixed to -2	
E_X	-	Scale factor evolution of the $M - C_R$ scaling relation	Fixed to 2	
F_X	-	Redshift evolution of the mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
G_X	-	Redshift evolution of the normalization of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
σ_X	-	Intrinsic scatter of the $M - C_R$ scaling relation	U(0.05, 2)	
• Weak len	sing mas	s calibration		
$A_{ m WL}$	-	Scatter in the weak lensing bias from the first principal component	<i>N</i> (0, 1)	
$B_{ m WL}$	-	Scatter in the weak lensing bias from the second principal component	<i>N</i> (0, 1)	
$C_{ m WL}$	-	Standardize mass slope of the weak lensing bias	<i>N</i> (0, 1)	
$D_{ m WL}$	-	Redshift dependent intrinsic scatter in the weak lensing bias	<i>N</i> (0, 1)	
$ ho_{M_{\mathrm{WL}},C_R}$	-	Intrinsic correlation between weak lensing mass and count rate	U(-0.9, 0.9)	
• Richness	mass cal	ibration		
$\log A_{\lambda}$	-	Normalization of the $M - \lambda$ scaling relation	U(1.4, 6)	
B_{λ}	-	Mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(0,2)$	
C_{λ}	-	Redshift evolution of the normalization of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
D_λ	-	Redshift evolution of the mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
σ_{λ}	-	Intrinsic scatter of the $M - \lambda$ scaling relation	U(0.05, 2)	
$ ho_{\lambda,C_R}$	-	Intrinsic correlation between richness and count rate	U(-0.9, 0.9)	
Contamination modeling				
$f_{ m AGN}$	-	Fraction of AGN contaminants in the extended source sample	U(0, 0.1)	
$f_{\rm RS}$	-	Fraction of RS contaminants in the extended source sample	U(0, 0.15)	
Redshift uncertainty				
σ_z	-	Relative error on the measured redshift	$\mathcal{TN}(0.0050, 0.0011, 0, 1)$	
b_z	-	Systematic bias in our redshift estimate	N(1.005, 0.037)	
c_z	-	Fraction of objects for which we measure a shifted redshift	$\mathcal{TN}(0.0013, 0.0010, 0, 1)$	
$C_{shift,z}$	-	Amount of redshift shift for c_z fraction of objects	U(-0.1, 0.1)	

Parameter	Units	Description	Prior	
• Cosmology				
$\Omega_{ m m}$	-	Mean matter density at present time	U(0.05, 0.95)	
$\log_{10}A_s$	-	Amplitude of the primordial power spectrum	U(-10, -8)	
H_0	$\frac{\frac{km}{s}}{Mpc}$	Hubble expansion rate at present time	N(67.77, 0.6)	
$\Omega_{ m b}$	-	Mean baryon density at present time	$\mathcal{U}(0.046, 0.052)$	
n_s	-	Spectra index of the primordial power spectrum	U(0.92, 1.0)	
w_0	-	Dark energy equation of state. Fixed to -1 in ACDM	U(-2.5, -0.33)	
$\sum m_{ u}$	eV	Summed neutrino masses. Fixed to 0 eV in ACDM	$\mathcal{U}(0,1)$	
• X-ray sca	ling rela	tion		
A_X	-	Normalization of the $M - C_R$ scaling relation	U(0.01, 3)	
B_X	-	Mass slope of the $M - C_R$ scaling relation	U(0.1, 5)	
D_X	-	Luminosity distance evolution of the $M - C_R$ scaling relation	Fixed to -2	
E_X	-	Scale factor evolution of the $M - C_R$ scaling relation	Fixed to 2	
F_X	-	Redshift evolution of the mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
G_X	-	Redshift evolution of the normalization of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
σ_X	-	Intrinsic scatter of the $M - C_R$ scaling relation	U(0.05, 2)	
• Weak len	sing mas	s calibration		
$A_{ m WL}$	-	Scatter in the weak lensing bias from the first principal component	<i>N</i> (0, 1)	
$B_{ m WL}$	-	Scatter in the weak lensing bias from the second principal component	<i>N</i> (0, 1)	
$C_{ m WL}$	-	Standardize mass slope of the weak lensing bias	<i>N</i> (0, 1)	
$D_{ m WL}$	-	Redshift dependent intrinsic scatter in the weak lensing bias	<i>N</i> (0, 1)	
$ ho_{M_{\mathrm{WL}},C_R}$	-	Intrinsic correlation between weak lensing mass and count rate	U(-0.9, 0.9)	
• Richness	mass cal	ibration		
$\log A_{\lambda}$	-	Normalization of the $M - \lambda$ scaling relation	U(1.4, 6)	
B_{λ}	-	Mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(0,2)$	
C_{λ}	-	Redshift evolution of the normalization of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
D_{λ}	-	Redshift evolution of the mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
σ_{λ}	-	Intrinsic scatter of the $M - \lambda$ scaling relation	U(0.05, 2)	
$ ho_{\lambda,C_R}$	-	Intrinsic correlation between richness and count rate	U(-0.9, 0.9)	
Contamination modeling				
$f_{\rm AGN}$	-	Fraction of AGN contaminants in the extended source sample	U(0, 0.1)	
$f_{\rm RS}$	-	Fraction of RS contaminants in the extended source sample	U(0, 0.15)	
Redshift uncertainty				
σ_z	-	Relative error on the measured redshift	$\mathcal{TN}(0.0050, 0.0011, 0, 1)$	
b_z	-	Systematic bias in our redshift estimate	N(1.005, 0.037)	
c_z	-	Fraction of objects for which we measure a shifted redshift	$\mathcal{TN}(0.0013, 0.0010, 0, 1)$	
$C_{shift,z}$	-	Amount of redshift shift for c_z fraction of objects	U(-0.1, 0.1)	

Parameter	Units	Description	Prior	
• Cosmology				
$\Omega_{ m m}$	-	Mean matter density at present time	U(0.05, 0.95)	
$\log_{10}A_s$	-	Amplitude of the primordial power spectrum	U(-10, -8)	
H_0	$\frac{\frac{km}{s}}{Mpc}$	Hubble expansion rate at present time	N(67.77, 0.6)	
$\Omega_{ m b}$	-	Mean baryon density at present time	$\mathcal{U}(0.046, 0.052)$	
n_s	-	Spectra index of the primordial power spectrum	U(0.92, 1.0)	
w ₀	-	Dark energy equation of state. Fixed to -1 in ACDM	U(-2.5, -0.33)	
$\sum m_{ u}$	eV	Summed neutrino masses. Fixed to 0 eV in Λ CDM	$\mathcal{U}(0,1)$	
• X-ray sca	ling rela	tion		
A_X	-	Normalization of the $M - C_R$ scaling relation	U(0.01, 3)	
B_X	-	Mass slope of the $M - C_R$ scaling relation	U(0.1, 5)	
D_X	-	Luminosity distance evolution of the $M - C_R$ scaling relation	Fixed to -2	
E_X	-	Scale factor evolution of the $M - C_R$ scaling relation	Fixed to 2	
F_X	-	Redshift evolution of the mass slope of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
G_X	-	Redshift evolution of the normalization of the $M - C_R$ scaling relation	$\mathcal{U}(-5,5)$	
σ_X	-	Intrinsic scatter of the $M - C_R$ scaling relation	U(0.05, 2)	
• Weak len	sing mas	s calibration		
$A_{ m WL}$	-	Scatter in the weak lensing bias from the first principal component	<i>N</i> (0, 1)	
$B_{ m WL}$	-	Scatter in the weak lensing bias from the second principal component	<i>N</i> (0, 1)	
$C_{ m WL}$	-	Standardize mass slope of the weak lensing bias	<i>N</i> (0, 1)	
$D_{ m WL}$	-	Redshift dependent intrinsic scatter in the weak lensing bias	<i>N</i> (0, 1)	
$ ho_{M_{\mathrm{WL}},C_R}$	-	Intrinsic correlation between weak lensing mass and count rate	U(-0.9, 0.9)	
 Richness 	mass cal	ibration		
$\log A_{\lambda}$	-	Normalization of the $M - \lambda$ scaling relation	U(1.4, 6)	
B_{λ}	-	Mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(0,2)$	
C_{λ}	-	Redshift evolution of the normalization of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
D_{λ}	-	Redshift evolution of the mass slope of the $M - \lambda$ scaling relation	$\mathcal{U}(-2,2)$	
σ_{λ}	-	Intrinsic scatter of the $M - \lambda$ scaling relation	U(0.05, 2)	
ρ_{λ,C_R}	-	Intrinsic correlation between richness and count rate	U(-0.9, 0.9)	
Contamination modeling				
$f_{\rm AGN}$	-	Fraction of AGN contaminants in the extended source sample	$\mathcal{U}(0,0.1)$	
$f_{\rm RS}$	-	Fraction of RS contaminants in the extended source sample	U(0, 0.15)	
Redshift uncertainty				
σ_z	-	Relative error on the measured redshift	$\mathcal{TN}(0.0050, 0.0011, 0, 1)$	
b_z	-	Systematic bias in our redshift estimate	N(1.005, 0.037)	
c_z	-	Fraction of objects for which we measure a shifted redshift	$\mathcal{TN}(0.0013, 0.0010, 0, 1)$	
$C_{shift,z}$	-	Amount of redshift shift for c_z fraction of objects	U(-0.1, 0.1)	

eRASS1 COSMOLOGICAL RESULTS : ACDM

•
$$\Omega_{\rm m} = 0.29^{+0.01}_{-0.02}$$
 (7% precision)
• $\sigma_8 = 0.88 \pm 0.02$ (2% precision)

eRASS1 COSMOLOGICAL RESULTS : wCDM

eRASS1 COSMOLOGICAL RESULTS : vCDM

- eRASS:1 vCDM
- Planck CMB 2020
- eRASS:1 vCDM + Planck CMB 2020
- SPT vCDM 2019
- SDSS DR16 BAO + CMB lensing
- SPT vCDM 2024

•
$$\sum m_{\nu} < 0.22$$
 (95% CL)

IMPACT ON THE S_8 TENSION

Ghirardini, Bulbul, EA et al., 2024

MORE : CLUSTER 2PT CORRELATION FUNCTION

CLUSTER 2PT CORRELATION FUNCTION

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Projected correlation function of the 4 volume selected eRASS1 cluster samples

CLUSTER 2PT CORRELATION FUNCTION

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Seppi et al., 2024

Cosmological results obtained from the eRASS1 clusters correlation function

EVEN MORE : f(R) **GRAVITY**

Einstein-Hilbert action

$$S_{\rm EH} = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi G} + \mathcal{L}_{\rm m} \right) -$$

Einstein equations

$$G_{\mu\nu} - f_R R_{\mu\nu} - \left(\frac{f}{2} - \Box f_R\right) g_{\mu\nu} - \nabla_\mu \nabla_\nu f_R$$

Hu & Sawicki, 2007
$$f(R) = -2\Lambda - f_{R0} \frac{\overline{R_0}^2}{R}$$
 with $f_{R0} \ll 1$

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$$\tilde{S}_{\rm EH} = \int d^4 x \sqrt{-g} \left(\left[\frac{R + f(R)}{16\pi G} \right] + \frac{G}{2} \right)$$

 $= 8\pi GT_{\mu\nu}$

30

EVEN MORE : f(R) **GRAVITY**

Einstein-Hilbert action

$$S_{\rm EH} = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi G} + \mathcal{L}_{\rm m} \right) -$$

Einstein equations

$$G_{\mu\nu} - f_R R_{\mu\nu} - \left(\frac{f}{2} - \Box f_R\right) g_{\mu\nu} - \nabla_\mu \nabla_\nu f_R$$

Hu & Sawicki, 2007
$$f(R) = -2\Lambda - f_{R0} \frac{\overline{R_0}^2}{R}$$
 with $f_{R0} \ll 1$

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$$\tilde{S}_{\rm EH} = \int d^4 x \sqrt{-g} \left(\left[\frac{R + f(R)}{16\pi G} \right] + \frac{1}{2} \right)$$

$= 8\pi GT_{\mu\nu}$

Impacts: The halo mass function The gravitationnal collapse of structures

EVEN MORE : f(R) **GRAVITY**

Einstein-Hilbert action

$$S_{\rm EH} = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi G} + \mathcal{L}_{\rm m} \right) -$$

Einstein equations

$$G_{\mu\nu} - f_R R_{\mu\nu} - \left(\frac{f}{2} - \Box f_R\right) g_{\mu\nu} - \nabla_\mu \nabla_\nu f_R$$

Hu & Sawicki, 2007

$$f(R) = -2\Lambda - f_{R0} \frac{\overline{R_0}^2}{R}$$
 with $f_{R0} \ll 1$

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$$\tilde{S}_{\rm EH} = \int d^4 x \sqrt{-g} \left(\left[\frac{R + f(R)}{16\pi G} \right] + \frac{1}{2} \right)$$

$= 8\pi G T_{\mu\nu}$

Impacts: The halo mass function The gravitationnal collapse of structures

EVEN MORE : f(R) **GRAVITY**

Einstein-Hilbert action

$$S_{\rm EH} = \int d^4 x \sqrt{-g} \left(\frac{R}{16\pi G} + \mathcal{L}_{\rm m} \right) -$$

Einstein equations

$$G_{\mu\nu} - f_R R_{\mu\nu} - \left(\frac{f}{2} - \Box f_R\right) g_{\mu\nu} - \nabla_\mu \nabla_\nu f_R$$

Hu & Sawicki, 2007
$$f(R) = -2\Lambda - f_{R0} \frac{\overline{R_0}^2}{R} \quad \text{with} \quad f_{R0} \ll 1$$

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$$\tilde{S}_{\rm EH} = \int d^4 x \sqrt{-g} \left(\left[\frac{R + f(R)}{16\pi G} \right] + \frac{1}{2} \right)$$

$= 8\pi G T_{\mu\nu}$

Impacts: The halo mass function The gravitationnal collapse of structures

EVEN MORE : f(R) GRAVITY

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

Latest constraints on the Hu-Sawicki parameterization of f(R) gravity from Cataneo et al., 2014.

Impacts:

- The halo mass function
- The gravitationnal collapse of structures

f(R) **GRAVITY**

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$f_{\rm R0}$ increases the number of massive clusters

f(R) **GRAVITY**

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

EA et al., 2024

$\log |f_{R0}| < 4.12$ with clusters only

f(R) COSMOLOGICAL CONSTRAINTS EA et al., 2024

WHAT IS NEXT?

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Abdalla et al., 2022

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

Redshift distribution of the clusters in each bin

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

eRASS1 cluster abundance + θ^*

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS Preliminary

eRASS1 cluster abundance + θ^*

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

eRASS1 cluster abundance + θ^*

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

eRASS1 cluster abundance + θ^*

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Preliminary

Abbott et al., 2023

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Preliminary

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

DES weak lensing shear and **DESI targeted LRG 2x2pt** + **CMB** are in tension with Planck best fit model

REDSHIFT EVOLUTION OF THE COSMOLOGICAL PARAMETERS

Emmanuel Artis (<u>eartis@mpe.mpg.de</u>)

Preliminary

Cluster abundance in good agreement with the predicted growth from Planck CMB

SUMMARY

We measured the cosmological parameters with eRASS1, the largest ICM selected cluster sample to date

- $\Omega_{\rm m} = 0.29^{+0.01}_{-0.02}$ (7% precision)
- $\sigma_8 = 0.88 \pm 0.02$ (2% precision)
- $\sum m_{\nu} < 0.22$ (95% CL)
- We do not find traces of the S_8
- More results to come on the growth of structures

Thank you!

