Results and strategies for measuring the gravitational interaction of antimatter

Gravity...

- General relativity is a classical (non quantum) theory
- EEP violations may appear in some quantum theory
- New quantum scalar and vector fields are allowed in some models (KK)

Einstein field: tensor graviton (spin 2,"Newtonian")

+ Gravi-vector (spin I)
+ Gravi-scalar (spin 0)
- Such fields may mediate interactions violating the equivalence principle
M. Nieto and T. Goldman, Phys. Rep. 205,5 22I-28I (1992)

Scalar:"charge" of particle equal to "charge of antiparticle" : attractive force Vector:"charge" of particle opposite to "charge of antiparticle": repulsive/attractive force

$$
V=-\frac{G}{r_{\infty}} m_{1} m_{2}\left(1 \mp a e^{-r / v}+b e^{-r / s}\right)
$$

Cancellation effects in matter experiment if $\mathrm{a} \sim \mathrm{b}$ and $\mathrm{v} \sim \mathrm{s}$

but also CPT...

although CPT is part of the "standard model", the SM can be extended to allow CPT violation

CPT violation and the standard model

Don Colladay and V. Alan Kostelecký
Department of Physics, Indiana University, Bloomington, Indiana 47405
(Received 22 January 1997)

CPT \& Lorentz violation
Modified Dirac eq. in SME
$-\underbrace{\left(i \gamma^{\mu} D_{\mu}-m_{e}-\sqrt[a_{\mu}^{e} \gamma^{\mu}-b_{\mu}^{e} \gamma_{5} \gamma^{\mu}]{\frac{1}{2} H_{\mu \nu}^{e} \sigma^{\mu \nu}+i c_{\mu \nu}^{e} \gamma^{\mu} D^{\nu}+i d_{\mu \nu}^{e} \gamma_{5} \gamma^{\mu} D^{\nu}}\right)}_{\text {Lorentz violation }} \psi=0$.

- Spontaneous Lorentz symmetry breaking by (exotic) string vacua
- Note: if there is a preferred frame, sidereal variation due to Earth's rotation might be detectable

What measurements are we talking about?

I) Measurement with charged antimatter
probe the gravitational potential using \bar{p} as "clocks": BASE
2) Measurements with neutral antimatter: $\overline{\mathrm{H}}$

Direct measurements with AEgIS, ALPHA-g, GBAR
3) related measurements in antiatomic systems

Potential future: positronium, protonium, antiprotonic atoms, ...

Antiprotons at CERN: a brief pre-history

stochastic cooling (proposed in 1968 by S. van der Meer, published in 1972);
successfully tested in the Initial Cooling Experiment (ICE) in 1978

Antiproton Accumulator (AA),Antiproton Collector (AC) and low energy antiproton ring (LEAR): AA start-up in 1980, LEAR began operation in 1982, AC from 1987 onwards AD start in 2000, ELENA commissioning in 2018 : looking at further very active decades with antiprotons

physics at the AD

expanding physics reach by including nuclear, molecular physics

the importance of working at low temperature

antiprotons for WEP tests

charged particles

BASE: precision comparative cyclotron frequency measurements of trapped $p(\bar{p})$

neutral systems

AEgIS: pulsed formation and beam of $\overline{\mathrm{H}}^{*}(\overline{\mathrm{H}})$
ALPHA-g: release of trapped $\overline{\mathrm{H}}$
GBAR: formation, trapping and cooling of $\overline{\mathrm{H}}^{+}$
anomalous gravitational scalar or tensor couplings to antimatter would cause clocks formed from matter/ antimatter conjugates to oscillate at different frequencies
antimatter "clock": free cyclotron frequency v_{c} of $p(\bar{p})$ in B-field
motion $=$ three independent harmonic oscillators at the modified cyclotron frequency $v_{+} \approx 29.6 \mathrm{MHz}$ and the magnetron frequency $v_{-} \approx 6.9 \mathrm{kHz}$, perpendicular to the magnetic field $B_{0} \mathbf{e}_{z}$, and at the axial frequency $v_{z} \approx 640 \mathrm{kHz}$ oscillating along B

$$
v_{\mathrm{c}}=\left(q B_{0}\right) /(2 \pi m)=\left(v_{+}^{2}+v_{\mathrm{Z}}^{2}+v_{-}^{2}\right)^{1 / 2}
$$

[^0]
BASE

measured the antiproton-to-proton charge-to-mass ratio with a fractional precision of 16 p.p.t. in different gravitational potentials

the first differential, and thus model independent, test of the weak equivalence principle of clocks for antimatter, showing no violation at the level of 3%.

antihydrogen for WEP tests

AEgIS: pulsed formation and beam of $\overline{\mathrm{H}}^{*}(\overline{\mathrm{H}})$
ALPHA-g: release of trapped $\overline{\mathrm{H}}$
GBAR: formation, trapping and cooling of $\overline{\mathrm{H}}^{+}$
(1) ALPHA-g : continuous formation via $\bar{p}+e^{+}+e^{+} \rightarrow \bar{H}+e^{+}$
(2) AEgIS : pulsed formation via
(3) GBAR: pulsed formation via

$$
\overline{\mathrm{P}}+\mathrm{Ps}^{*} \longrightarrow \overline{\mathrm{H}}+\mathrm{e}^{-}
$$

ALPHA

Traps for charged particles and continuously formed ground-state antihydrogen

G.B. Andresen at al, Nature vol. 468, pages 673-676 (2010)

The ALPHA collaboration, Nature Physics vol. 7, pages 558-564 (2011)

From (~static) horizontal magnetic trap to (continuously modifiable) vertical magnetic trap:

$\bar{g}=(0.75 \pm 0.13$ (statistical + systematic $) \pm 0.16$ (simulation) $) g$
E.K. Anderson et al., $\underline{\text { Nature }}$ vol. 621, pages 716-722 (2023)

Schematic overview
$\mathrm{Ps}^{*}+\bar{p} \rightarrow \overline{\mathrm{H}}^{*}+e^{-}$

Anti-hydrogen formation via Charge exchange process with

- o-Ps produced in SiO_{2} target close to p ; laser-excited to Ps
- Htemperature defined by-p temperature
- Advantages:
- Pulsed \bar{H} production (time of flight - Stark acceleration)
- Narrow and well-defined $\overline{\mathrm{H}} n$-state distribution
- Colder production than via standard process possible
- Rydberg Ps \& $\sigma \approx a_{0} n^{4} \quad \rightarrow \mathrm{H}$ formation enhanced

goal: $\Delta \mathrm{g} / \mathrm{g} \sim 1 \%$ with 1000 H
gratings produce periodic pattern on detector; measure gravity-induced vertical shift of fringes

AEgIS

why Rydberg Ps ?

charge exchange: $\mathrm{Ps}_{n}^{*}+\overline{\mathrm{p}} \rightarrow \mathrm{H}^{*}+\mathrm{e}^{-}$

$\sigma_{C E} \propto n^{4}$

D. Krasnicky, C. Canali, R. Caravita, G. Testera, Phys. Rev. A 94, 022714 (2016) DATA COMPARISON BETWEEN $\mathrm{n}=10$ and $\mathrm{n}=50$

FIG.2: Normalized cross section

FIG. 3. Charge-exchange cross section σ as a function of the P_{s} center-of-mass energy. The plot shows the same points of Fig. 2. The lines simply connect the points to help the graphical interpretation.

(2) Challenges:

AEgIS

Pulsed formation:

Temperature:

Measurement:

S.Aghion et al., Phys. Rev.A 98, 013402 (2018)

dedicated experiments to establish laser-cooling of anionic systems under way

principle established with \bar{p}; displacement of \bar{p} annihilation vertices (blue dots) measured relative to light (red)
S. Aghion et al.,"A moiré deflectometer for antimatter", Nature Communications 5 (2014) 4538

and many more...

(2) Pulsed production of $\overline{\mathrm{H}}$ in 2018

$$
\mathrm{Ps}^{*}+\overline{\mathrm{p}} \rightarrow \overline{\mathrm{H}}^{*}+\mathrm{e}
$$

$\overline{\mathrm{H}}$ detectors: scintillating slab array (mips), FACT (vertex tracker)

Synthesis of antihydrogen from in-flight charge exchange of decelerated antiprotons in positronium for the GBAR experiment PhD thesis Corentin Roumegou
https://theses.hal.science/tel-04391275/

GBAR

Antihydrogen ion and Be+ ion trap

(a) First RF paul trap

(b) Final precision trap

Principle of gravity measurement with $\overline{\mathrm{H}}$ (after photodetachment of e^{+})

(a) Scheme of "quantum free fall"

(b) Probability current density $|J(X, T)|$

First formation of $\overline{\mathrm{H}}$ by GBAR

 This gives an excess of 18.8 ± 5.0 events in the mixing runs with a significance of $4.1 \sigma . \quad(2.9 \pm 0.9) \times 10^{-3} \overline{\mathrm{H}} /$ pulse Significant improvements are under way on multiple parts of the apparatus to enhance efficiencies and $\overline{\mathrm{H}}$ (and $\overline{\mathrm{H}}$) production rates

back to AEg|S:

- Ps gymnastics (for better $\overline{\mathrm{H}}$ beam but also as inertial sensor)
- redesigned apparatus for required flux (~I-IO $\overline{\mathrm{H}} / \mathrm{pulse}, 10^{4}$ needed for \%)
- other inertial test systems (purely leptonic, baryonic)
old design needs radical improvements

Main goal of AEgIS Phase 2: a first proof-of-concept inertial measurement with pulsed antihydrogen

Take-home messages from the AEgIS Phase 1

- The antihydrogen source intensity must be increased by 2 orders of magnitude
- The temperature of the produced atoms must be reduced by 1 order of magnitude
- The first gravitational measurement has to be designed to use Rydberg antihydrogens
- The free-fall should take place in the most homogeneous volume of the AEgIS magnet

New AEgIS Phase 2 configuration

- Positronium conversion target on-axis
- Laser excitation in a Doppler-free scheme
- Positrons passing through resting antiprotons

Ps \perp to $\overrightarrow{\mathrm{B}}:$ field ionization $\rightarrow \mathrm{n}_{\text {max }} \sim 15$ Ps // to $\overrightarrow{\mathrm{B}}$: field ionization $\rightarrow \mathrm{n}_{\text {max }} \gtrsim 35$ cryogenic optimized Ps target: cold Ps AD \rightarrow ELENA: \# $\times 100$

(2) Upgrade of AEgIS to AEgIS-2

2 pulsed production of $\overline{\mathrm{H}}$ (new geometry)

Prisms for laser beam

on-axis miniature Ps formation target

> Linear piezo actuator Trap alignment

Rotatable
 ionization grid reflection and beam
monitoring

Laser beam monitoring with fiber array

Antiprotonic atoms formation region

towards formation of "intense" metastable Ps or Rydberg Ps beam for inertial sensing with Ps
Efficient Rydberg positronium production
 Efficient $2^{3} \mathrm{~S}$ positronium production by stimulated decay from the $3^{3} \mathrm{P}$ level \rightarrow long-lived Ps Laser cooling of Ps via $1^{3} \mathrm{~S}-2^{3} \mathrm{P}$ transition
beam of meta-stable Ps

stimulated formation of metastable $2^{3} \mathrm{~S}$ Ps*

UV excitation: $1^{3} \mathrm{~S} \rightarrow 3^{3} \mathrm{P}$

stimulated decay:
spontaneous decay:

$$
3 \underset{3^{3}{ }^{3}-22^{3} \mathrm{~S}}{3} \mathrm{~S}
$$

(29.7 $\pm 1.9) \%$
(9.7 ± 2.7)\%

> | simultaneous production of |
| :--- |
| 205.05 nm and 13 I 2.2 nm |
| with a single system is |
| (barely) feasible... |

improvements on laser system (second separate system now complete) \rightarrow improved beam intensity \rightarrow inertial sensing, grating tests, spectroscopy

(2) Ps* velocimetry ${ }^{\mathrm{B}=\text { IT }}$

probed by

 UV Doppler velocimetry

Doppler broadening \otimes laser bandwidth

M. Antonello et al. (AEgIS Collaboration), Phys. Rev. A 102 (2020) 013101

Key findings

- Positronium excited to $\mathrm{n}=15-17$ in a 1T magnetic field
- Rydberg Ps self-ionizes due to the motional Stark electric field
- Limiting factor: Ps cannot be excited at higher levels than $\mathrm{n}=17$

laser-cooling of Ps

two independent laser systems are available \rightarrow combine them!
(1) interact laser pulse @ 243 nm (pulse length 100 ns)

(2) after cooling, Ps Doppler-profile to extract velocity distributions (transverse, longitudinal)

laser-cooling of $\mathrm{Ps} \rightarrow$ possible enhancement in $\overline{\mathrm{H}}$ production rate, Ps beam

We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived $2{ }^{3} \mathrm{P}$ states. The second effect is one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) to 170(20) K.
L.T. Glöggler et al. (AEḡIS Collaboration)
accepted in PRL Phys. Rev. Lett. 132, 083402 - Published 22 February 2024
paper submited... and new measurements planned with improved system laser-cooling of $\mathrm{Ps} \rightarrow$ possible enhancement in $\overline{\mathrm{H}}$ production rate, Ps beam

(2) Upgrade of AEgIS to AEgIS-2

ion source is essential for exotic atom, ion, molecule and CERN quantum sensing program!

antiprotonic Rydberg atoms:

atomic physics processes (Rydberg states, cascades, binding energies, lifetimes)
nuclear physics processes: the deeply bound states' energy levels and lifetimes are affected by strong-interaction effects, which in turn provide the opportunity to study nuclear forces at large distances ("nuclear stratosphere") as well as isotope-related nuclear deformations

formation process: inject antiprotons into solid/ liquid/gaseous target material

example: antiprotonic helium
established method: Rydberg atom formation; Stark mixing upon collisions, practically immediate annihilation, from high-n s-states
consequence: only $\overline{\mathrm{p}} \mathrm{He}$ metastable states; all other antiprotonic atoms cascade rapidly, Stark mixing via collisions with other atoms \longrightarrow not possible to study them

X-rays in cascade of antiprotonic atoms

Correlate measurements of:

- antiprotonic x-ray cascade
(annihilation radius, energy shifts)

Annihilation with nucleus

- $\overline{\mathrm{p}}-\mathrm{p}$ or $\overline{\mathrm{p}}-\mathrm{n} \rightarrow$ change in (Z, N) of mother nucleus
- resulting pions can interact with the (Z^{\prime}, N^{\prime}) and fragment it

but it can also survive and may remain trapped \rightarrow producing (initially hot, but coolable) trapped highly charged isotopes
fragmentation is not the dominant process
a wide swathe of radioisotopes can be produced (identified via spectroscopy with irradiated foils)
\longrightarrow starting point for subsequent manipulations

AEgIS : an improved production method for $\overline{\mathrm{p}}$-atoms

multi-step process that builds on existing techniques (Iodine source from Torn)

(1) formation and capture of HCl
(1) photo-detachment: $I^{-} \rightarrow I^{0}+e^{-}$ (Y_{1})

(200.) Rydberg excitation: $1^{0} \rightarrow I^{*} \quad\left(\gamma_{2}+\gamma_{3}\right)$
(3) Charge exchange: $\overline{\mathrm{p}}+\mathrm{I}^{*} \rightarrow \mathrm{P}^{++*}+\mathrm{e}^{-} \quad\left(\overline{\mathrm{p}}+\mathrm{Ps}^{*} \rightarrow \overline{\mathrm{p}} \mathrm{e}^{+*}+\mathrm{e}^{-}\right)$

AEgIS : an improved $\overline{\mathrm{p}}{ }^{*}$ (and $\overline{\mathrm{p}} \mathrm{d}^{*}$) production method

S. Gerber, D. Comparat, M.Doser, Phys. Rev. A 100, 063418 (2019)

- co-trap H^{-}(or D^{-}) and $\overline{\mathrm{p}}$ in a Penning trap
- photo-ionize H^{-}
- laser-excite $\mathrm{H} \underset{2 \mathrm{\gamma}}{\overrightarrow{2}} \mathrm{H}^{*}(30)$
- charge-exchange reaction:
$\mathrm{H}^{*}(30)+\overline{\mathrm{p}} \rightarrow \overline{\mathrm{p}} \mathrm{p}(n)+\mathrm{e}^{-} \quad(n \sim 2000)$

- detect fluorescence \& annihilation ($\pi^{ \pm}, \pi^{0}$) pulsed process: impart slight v_{z} to $\overline{\mathrm{p}}$, anion before formation \rightarrow slow horizontally traveling neutral matter/antimatter beam \rightarrow inertial sensing w/ protonium

AEgIS : an improved $\overline{\mathrm{p}} \mathrm{X}^{*}$ production method

(using Rb as an example starting point)

- co-trap Rb ${ }^{-}$and $\overline{\mathrm{p}}$ in a Penning trap (use stable ${ }_{85}^{37} \mathrm{Rb}$)
- photo-ionize Rb^{-}
- laser-excite $R b \underset{2 \gamma}{\longrightarrow} \mathrm{Rb}^{*}(30)$
- charge-exchange reaction: $R b^{*}(30)+\bar{p} \rightarrow \bar{p} R b(n)+e^{-} \quad(n \sim 2000)$
- sympathetically-cooled $R b^{-} \rightarrow V_{\bar{p} R(n)}$ is low: $\mathrm{T}_{\overline{\mathrm{P} R \mathrm{R}}} \sim 100 \mu \mathrm{~K} \leftrightarrow \mathrm{~V}_{\mathrm{Rb}} \sim 0.3 \mathrm{~mm} / \mathrm{ms}$
(~100 mm/ms @ IOK)
\rightarrow inertial sensing w/ neutral $\overline{\mathrm{p}} \mathrm{X}^{*}$ atoms

AEglS : a novel (trapped) radioisotope production method

AEgIS : a novel hollow atom(ic ion)

- in nearby Penning trap, produce Ps*

$$
\begin{aligned}
& \text { charge-exchange reaction 1: } \\
& \mathrm{Ps}^{*}+{ }_{83}^{37} \mathrm{Rb}^{37+} \rightarrow{ }_{83}^{37} \mathrm{Rb}^{36+} *+\mathrm{e}^{+}
\end{aligned}
$$

```
-> spectrocopic QED tests, BSM
```

$\longrightarrow \frac{\text { Rydberg ionic atom (electronic or antiprotonic) }}{}$ of a radio-isotopic $\mathrm{HCI}=$ hydrogen-like Z~40 ion

Atomic spectroscopy of trapped ionic systems
\longrightarrow is very sensitive to exotic interactions, benefits from long lifetime of Rydberg atom
\longrightarrow ground-state hydrogen-like Z~40 ion : qubit?

AEgIS : a novel hollow atom(ic ion)

- in nearby Penning trap, produce Ps* (or $\overline{\mathrm{p}} \mathrm{Rb}^{*}$ again)

$$
\begin{aligned}
& \text { charge-exchange reaction 2: } \\
& (\overline{\mathrm{p}} \mathrm{Rb})^{*}+{ }_{83}^{37} \mathrm{Rb}^{37+} \rightarrow\left(\overline{\mathrm{p}}_{83}^{37} \mathrm{Rb}\right)^{36+*}+\mathrm{Rb}^{+}
\end{aligned}
$$

\rightarrow spectrocopic QED tests, BSM

$\longrightarrow \frac{\text { Rydberg ionic atom (electronic or antiprotonic) }}{}$ of a radio-isotopic $\mathrm{HCI}=$ hydrogen-like Z~40 ion

Atomic spectroscopy of trapped ionic systems
${ }_{83}^{37} R b_{88}^{37+}$
\longrightarrow is very sensitive to exotic interactions, benefits from long lifetime of Rydberg atom
\longrightarrow very clean fluorescence spectroscopy: QCD effects?

AEgIS : a novel dark matter search

sexaquark: uuddss bound state (m ~ $2 m_{p}$) [Glennys Farrar ${ }_{\text {https://arxiv.org/abs/1708.08951] }}$ not excluded by prior searches for similar states (among them, the H dibaryon) in the GeV region astrophysical bounds can be evaded standard model compatible (uuddss bound state)

\rightarrow novel DM search

$$
S=+2, Q=-I
$$

Geant-4 simulation

in-trap formation of antiprotonic atoms
\longrightarrow charged particle tracking, PID detection of spectator p, d

Summary:

Tests of the WEP with antimatter systems have just started and have many years of improvements ahead of them.

Charge exchange processes between Rydberg systems and single charged particles provide controlled access to unique exotic systems, with which not only gravity but also possible novel gravity-like interactions can be explored.

We've just started working with antimatter Rydberg systems and have just started thinking about antiprotonic Rydberg systems, but it is clear that there are many opportunities and open questions, from tests of fundamental symmetries to studies of exotic atoms to nuclear physics to searches for dark matter, and many more...
the end

antihydrogen molecular ion: $\overline{\mathrm{H}}_{2}^{-} \quad \sim \mathrm{H}_{2}^{+}$

H_{2}^{+}has very narrow transitions, clock @ $10-15$ level; how to form antimatter analog?
$\mathrm{H}_{2}{ }^{+}$and HD+: Candidates for a molecular clock, J.-Ph.Karr, J. of Mol. Spectr. 300, 2014, 37-43
current thinking: $\overline{\mathrm{H}}+\overline{\mathrm{H}}+\mathbf{Y} \rightarrow \overline{\mathrm{H}}_{2}^{-}+\mathrm{e}^{+}$
$\mathrm{H}_{n 1}-\mathrm{H}_{n^{\prime \prime}}$ Associative ionization
M. Zammit et al., Phys. Rev. A 100, 042709 (2019)
(~continuous, extremely low numbers, very low rate)
alternatively: $\mathrm{Ps}^{*}+\overline{\mathrm{P}}+\overline{\mathrm{P}} \stackrel{?}{\rightarrow} \overline{\mathrm{H}}_{2}^{-(*)}+\mathrm{e}^{-}$
(pulsed, requires ridiculous $\mathrm{n}(\mathrm{Ps})$, very low rate? state?)

Rydberg atom - Rydberg atom associative ionization (but is Penning ionization >> ?) ${ }^{\#}$
(pulsed, high instantaneous density... rate? state?)
\# "associative ionisation between two excited states is less than a tenth of the Penning ionisation" - M Cheret et al 1982 J. Phys. B: At. Mol. Phys. 153463

further antiprotonic Rydberg molecules

- pulsed formation: trapped anionic molecule together with antiprotons, photo-detachment of electron; one molecule already being targeted: $\mathrm{C}_{2}^{-} \quad\left(\mathrm{T}\left(\mathrm{\rho C}^{(+)_{2}}\right) \sim \mathrm{mK}\right)$

- pulsed formation: co-trapped multiple anion species $\mathrm{A}^{-}, \mathrm{H}^{-}$ with antiprotons; photo-detach \& excite H^{-}to form $\bar{p} p^{*}$ photo-detach \& excite A^{-}to form A^{*} (and $\bar{\Gamma} A^{(+) *)}$

Rydberg atom interactions between: $A^{*}, \overline{\bar{\prime}} \mathrm{~A}^{(+)}, \overline{\mathrm{P}} \mathrm{p}^{*}$

further (trapped) antiprotonic Rydberg (ionic) molecules

- starting from trapped HCl's: trapped $\mathrm{HCl}{ }^{\mathrm{Z}+}$ (from $\overline{\mathrm{p}}^{\mathrm{Z}+\mathrm{I}} \mathrm{A}$):
- near-by production of protonium or antiprotonic atom
- charge exchange
- sympathetic cooling with e.g. Cs+

$$
\left.\left.\mathrm{HCl}{ }^{+}+\bar{p} p^{*} \rightarrow \overline{\mathrm{p} H C l Z+*}\right)+p\right) \quad \text { e.g. }\left(\overline{\mathrm{p}}_{83}^{37} \mathrm{Rb}\right)^{36+*}
$$

results in: highly charged antiprotonic cold Rydberg cation

- 3-body formation: combine with nearby cold anions ($\overline{\mathrm{p}}, \mathrm{X}^{-}$)

$$
\bar{p}+\bar{p} H C l Z+* \rightarrow(\bar{p} H C l Z+* \bar{p})_{\text {motecuar ion }}+\gamma
$$

$\left(\bar{P}_{83}^{37} \mathrm{Rb}\right)^{36+*}$

towards (pulsed formation of) matter-antimatter Rydberg systems ...

- positronium (spectroscopy, inertial sensing in metastable beams)
- antiprotonic Rydberg atoms (with $\overline{\mathrm{p}}$ instead of e^{-})
- antiprotonic molecules $\left(\bar{H}_{2}^{-}\right.$, others ?)
- search for a novel dark matter candidate

Limit from motional Stark ionization

AEgIS-1 Ps* distribution
[1] S. Mariazzi et al., J. Phys. B (2021) 085004

Anion cooling for $\mathrm{AEgIS}: \mathrm{C}_{2}^{-}$
Sisyphus cooling

(b) Electric potential (meV)

Electronic and vibrational levels of C_{2}
Arrow width ~ Franck-Condon transition strength

$\overline{\mathrm{p}} \mathrm{EDM}$

formation of very interesting antiprotonic molecules ($\overline{\mathrm{p}} \overline{\mathrm{p}}, \overline{\mathrm{H}}_{2}^{-}, \ldots$)
controlled study of antiprotonic atoms (radioisotopes)
study of tidal effects in nuclear matter
production of fully stripped ions \rightarrow Rydberg constant
studies of antiproton-induced nuclear fragmentation
production of (currently unavailable at CERN) radio-isotopes
polarized antiprotons
antineutrons: low $E \bar{n}$ emission and nuclear interactions

These are pipe dreams for now, but that doesn't mean we shouldn't think about whether they make sense, and if so, keeping them in our sights for when we can start thinking about making them a reality.

high-resolution position-sensitive detector for $\overline{\mathrm{H}} / \mathrm{Ps}$

concept

USAF-51 resolution mask

smallest feature size $\sim 35 \mu \mathrm{~m}$

dedicated e^{+}beam test
sensor + Al layer) + MCP stack

Am-241 source on TPX3 (ASIC + Si

Am-241 source on TPX3 (ASIC)

Positron beam on TPX3 (ASIC) + MCP stack

[^0]: Borchert, M.J., Devlin, J.A., Erlewein, S.R.et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio. Nature 601, 53-57 (2022)

