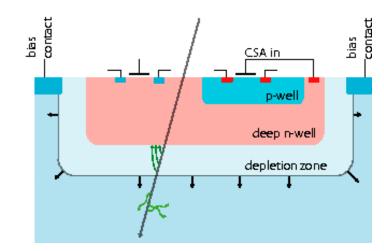
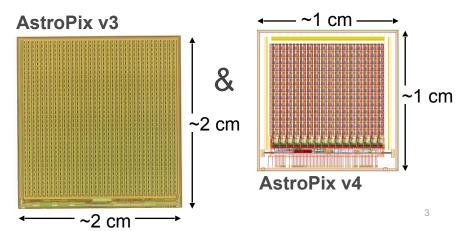


AstroPix Low power HVCMOS active pixel sensors for space and collider experiments

Manoj Jadhav Argonne National Laboratory

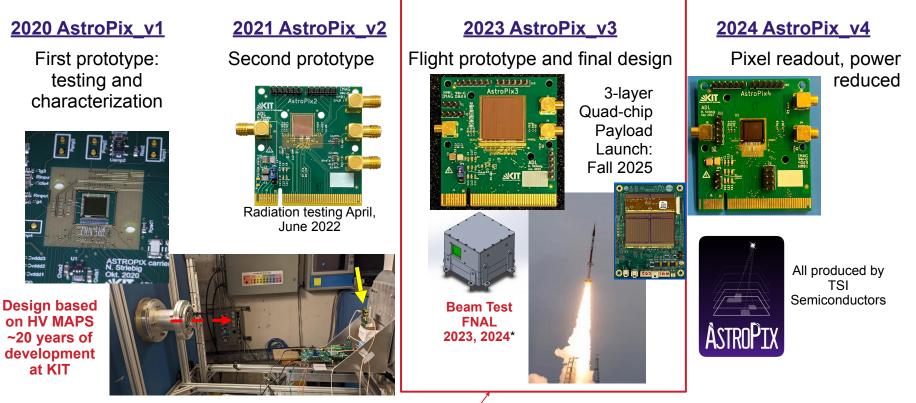
on behalf of Astropix team

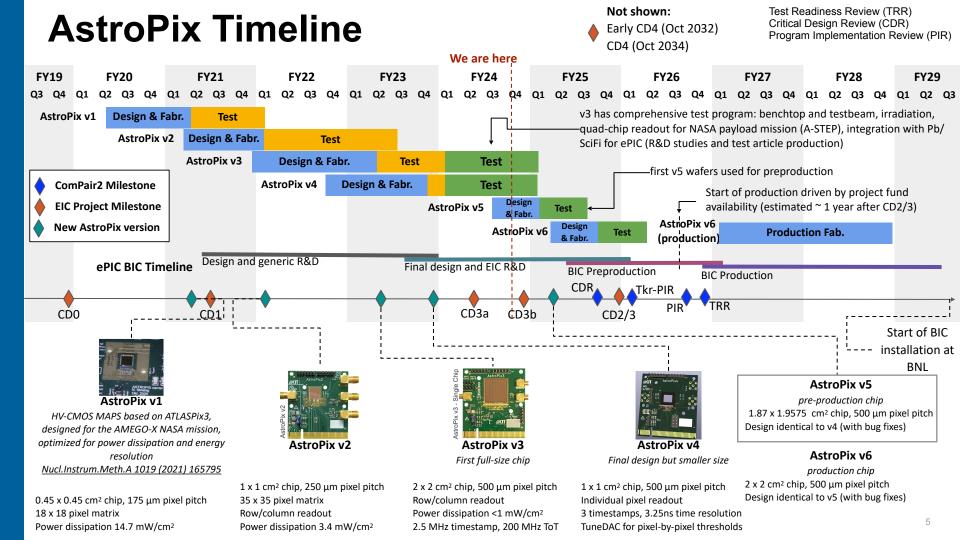

AstroPix


HV-CMOS Monolithic Active Pixel Sensor (MAPS):

- Combination of silicon pixel & Front-End ASIC
- On-pixel charge amplification and digitization
- Technology uses more typical CMOS wafer processing for cost effective mass production
- Fabrication on single wafer enables shorter design cycle
- No need to bump-bond to each pixel improves yield

AstroPix (based on ATLASPix3 arXiv:2109.13409)

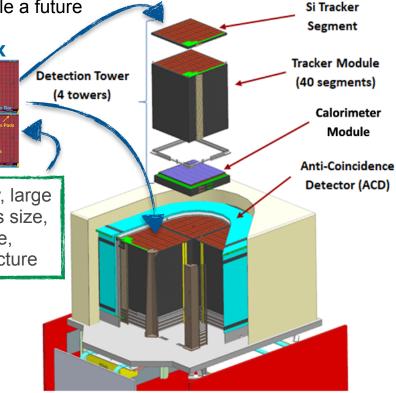

- 180nm HV-CMOS MAPS sensor designed at KIT (also designed ATLASPix, MuPix, etc.)
- Developed for AMEGO-X GSFC/NASA mission (Upgrade to the Fermi's LAT)
- Power consumption <1.5 mW/cm²
- Energy resolution target of 2% @ 662keV



Overview of AstroPix

Monolithic Silicon CMOS sensor for gamma-ray astrophysics

AstroPix selected for BIC /

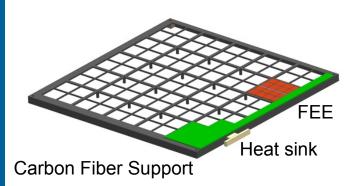

Astropix for AMEGO-X

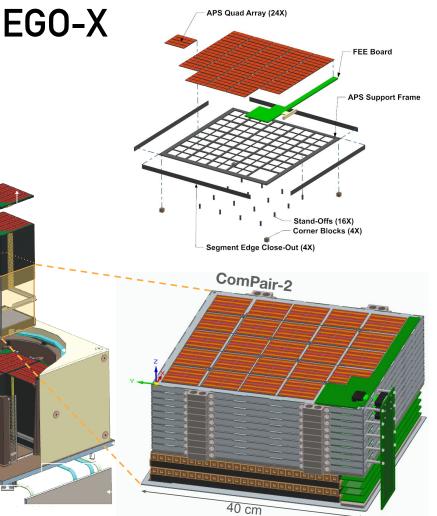
AMEGO-X is a next generation MeV γ -ray multi-messenger observatory

- AMEGO-X will develop the necessary technologies to enable a future MeV mission spanning the Compton and pair regime AstroPix
- Gamma-ray Detector (GRD)
 - Tracker Module \Rightarrow Silicon pixel detectors
 - 40 layers of MAPS detectors
 - 4 towers: 450 mm x 450 mm (each)
 - Calorimeter Module
- Anti-Coincidence Detector (ACD)
 - Reject charge particles (background)

Increase fidelity, large optimized pixels size, slower response, readout architecture

Modified for low power, better energy resolution for space application

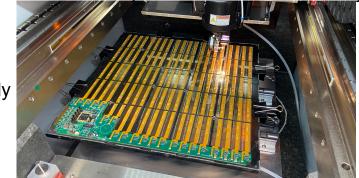

AMEGO-X as a Compton and pair-production telescope to achieve unprecedented sensitivity between 100 keV and 1 GeV

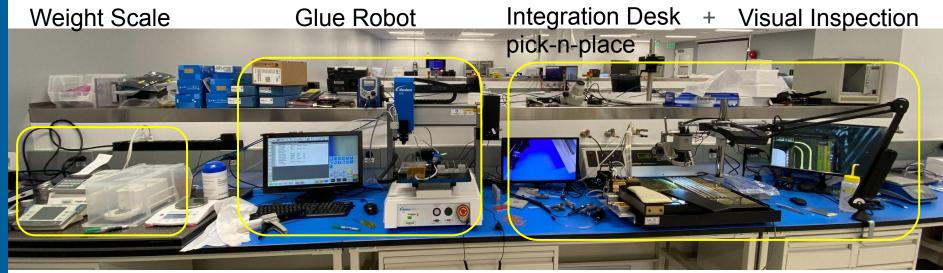

ATLASPix: CMOS detector design for ATLAS experiment at CERN

ComPair2, a prototype for AMEGO-X

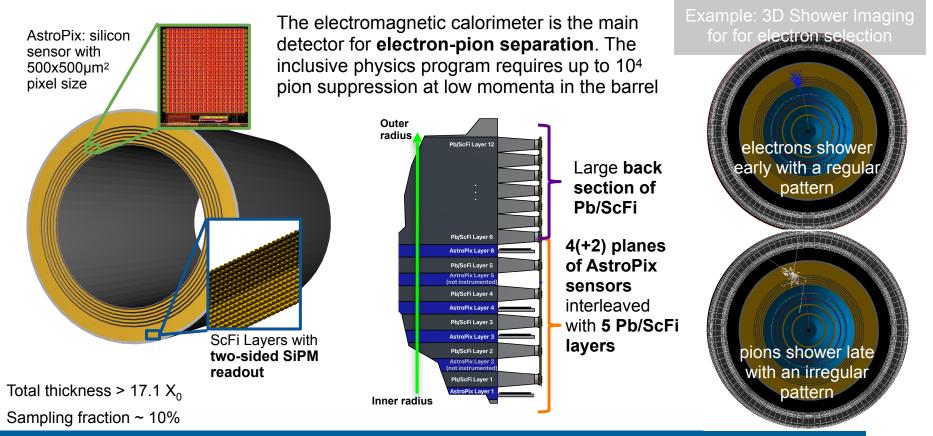
Funded in 2023 through NASA APRA

- A prototype detector consisting of two subsystems of AMEGO-X
- Will be launched with balloon flight
- 450 mm X 450 mm layers
- 10 layers of MAPS detectors
- Confirms performance across the Compton and Pair regimes and in a relevant environment, raising technology readiness level (TRL) to 6
- Provide hardware demonstration of novel event reconstruction techniques

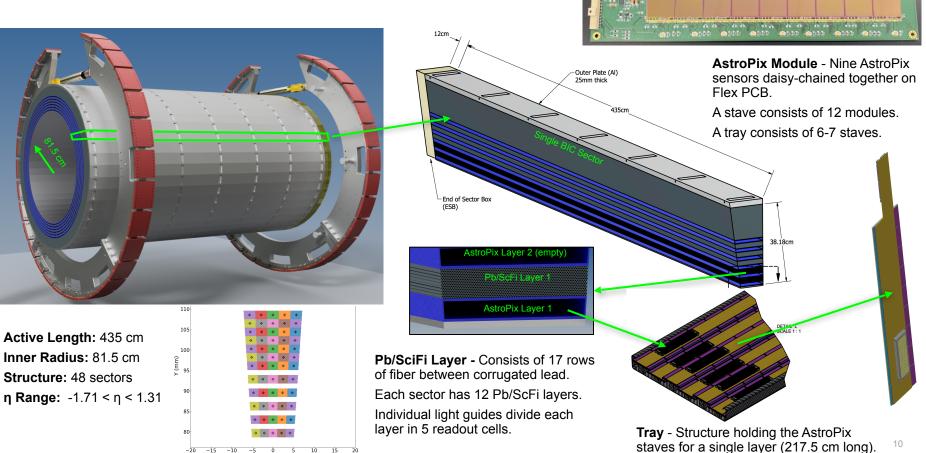




ComPair2, a prototype for AMEGO-X


- Reception of Chips
 - Mass measurement, metrology, and Visual Inspection
 - Initial electrical characterization
- AstroPix Chip assembly , Flex bus assembly, FEE board assembly
- Wire-bonding and potting
- Vibration (successful with 3 layers of quad chips), TVAC and electrical tests after assembly

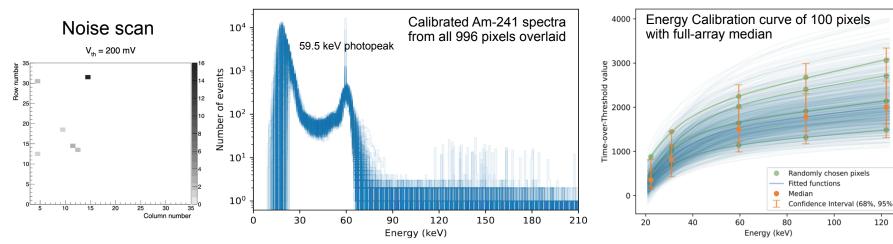
First almost fully assembled ComPair2 Tray


The ePIC Barrel Imaging Calorimeter (BIC)

Energy resolution - Primarily from Pb/ScFi layers (+ AstroPix energy information) **Position resolution** - Primarily from Imaging Layers (+ 2-sided Pb/ScFi readout and φ-R segmentation)

The ePIC Barrel Imaging Calorimeter (BIC)

Components and Terminology

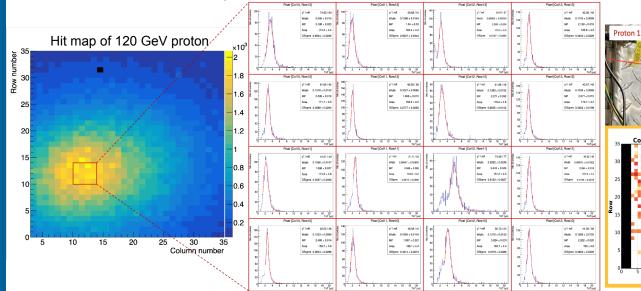

AstroPix Module PCB test article

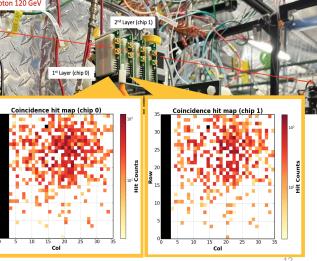
Demonstration of Performance: AstroPix v3

Bench Test: Radiation Source Test on AstroPix v3

- The AstroPix dynamic range floor (25 keV) allows for threshold values of more than 200 mV above baseline.
- Energy resolution/calibration: Cd-109, Ba-133, Am-241, and Co-57 from 22.2 keV to 122 keV
- Dynamic range: 25-200 keV (v5 will test 700 keV dynamic range)
- 44% of pixels meet the energy resolution requirement of 10% at 59.5 keV with a median full-width half-maximum of 6.2 keV (10.4%).
- **92.4% of pixels achieve the low-energy floor requirement** of 25 keV sensitivity, required for BIC.

Demonstration of Performance: AstroPix v3


Beam Test of AstroPix v3


Single layer

- Data collected with a 120 GeV proton beam.
- The hit map reveals the proton beam profile with 500 um position resolution.
- Collected ToT values for the marked pixels with MIP response.
- Behaves well in the particle rates of 13kHz

Double layer

- 120 GeV proton beam events from the first two layers, read in coincidence, showing the position of the hit pixel.
- The proof-of-concept demonstration of the integration of two daisychained AstroPix_v3 layers in a beamlike environment

Demonstration of Performance: AstroPix v3

Am241

(59.5 keV)

2.674 ±

0.1805

15.9%

Ba133

(81 keV)

3.178 ±

0.2466

18.2 %

Beam Test of AstroPix v3

Single layer

- Calibration using different radiation sources by ToT measurements
 - Ba-133 (30.84 and 81 keV, Am-241 (59.5 keV)

Ba133

(30.84 keV)

1.773 +

0.1553

20.6 %

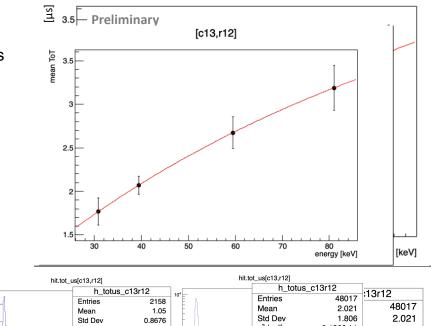
Pol2 or linear+exponential decay fitting

Mean

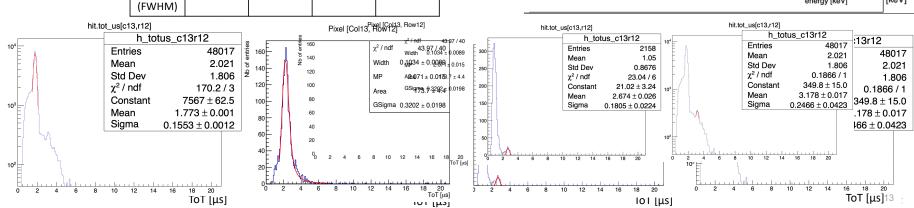
[us]

E_{res}

(3)


- MPV of 120 GeV MIPs proton with pixel [C13, R12] is 39.41 keV
 - Preliminary results are ready (manuscript under progress)

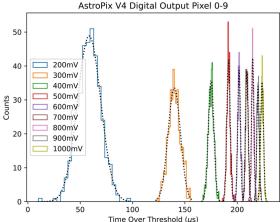
Proton

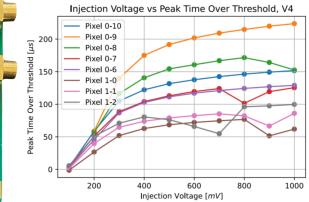

(120 GeV)

2.071

(MPV)

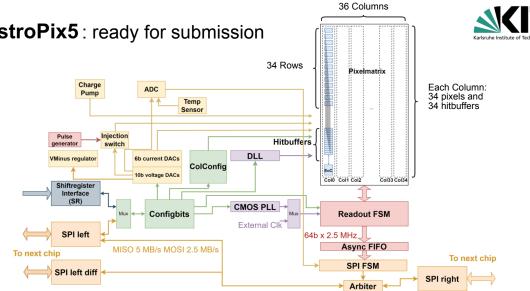
Calibration curve as a function of energies [keV] at [c13, r12]




AstroPix v4/v5

AstroPix v4 : Final design engineering version

- Chip size 1 \times 1 cm²; Thickness 700 $\mu m,\,V_{BD}$ ~ 400V
- Pixel pitch 500 μm with pixel size 300 $\mu m,\,16\times16$ pixel matrix
- Individual pixel readout with individual hit buffer
 - No identification issue due to ghost hits
- 3 Timestamps 2.5MHz (TS), 20 MHz (Fine TS), and 16 bit Flash TDC
 - Fast ToT and Timestamp with
 3.125 ns time resolution
- TuneDACs Pixel-by-pixel threshold tuning and pixel masking
- Daisy Chain readout pass hits to next chip through QSPI
- Self-triggered (reads out active hits)


Relevant AstroPix v5 Specifications

Pixel Matrix:

- 36 cols x 34 rows
 - —32 Columns with Standard NMOS Comparator
 - —2 Columns with dynamic Feedback
 - —1 Column with NMOS Comparator and Resistor Load
 - -1 Column with NMOS Comparator and **AstroPix5**: ready for submission PMOS Load
- 500u Pixel Pitch and 300u Pixel Size
- 3 Tunebits per Pixel
- Pixel Dynamic Range 20 keV 700 keV
- Noise Floor 5 keV (2%@662 keV)
- Bias Voltage up to 400-500 V to maximize depletion
- Fully NMOS Comparator
- In Pixel amplifier with Dynamic Feedback option for improved Dynamic Range

Power Consumption:

- Pixel 4.6 uW
- Pixel matrix 5.3 mW
- Digital 2.2 mW
- 700 uW DigitalTop
- Total: ~2 mW/cm² for 2x2 cm chip

Conclusion

HV MAPS are a robust technology >20 years in development and used in various particle physics instruments

- AstroPix development > 5 years and ~\$5M investment from NASA
- overlapping design requirements for gamma-ray space telescopes and nuclear physics imaging calorimeters


Testing and characterization of AstroPix_v3 is underway

- specific tests designed for AMEGO-X and ePIC
- meeting our project goals

AstroPix_v5 is designed and will be fabricated by AMS early 2025

Name	Journal	Link	arxiv
Developing the Future of Gamma-ray Astrophysics with Monolithic Silicon Pixels	NIM A	https://www.sciencedirect.com/science/article/pii/S01689002210078042 via%3Dihub	https://arxiv.org/abs/2109.13409
AstroPix: Investigating the Potential of Silicon Pixel Sensors in the Future of Gamma-ray Astrophysics	SPIE 2020	https://www.spiedigitallibrary.org/conference-proceedings-of-spie/ 11444/114442Q/AstroPixinvestigating-the-potential-of-silicon-pixel-sensors- in/10.1117/12.2562327.full#_ =_	https://arxiv.org/abs/2101.02665
Monolithic Active Pixel Sensors on CMOS technologies	Snowmass 2021		https://arxiv.org/abs/2203.07626
AstroPix: Novel monolithic active pixel silicon sensors for future gamma-ray telescopes	SPIE 2022	https://www.spiedigitallibrary.org/conference-proceedings-of-spie/ 12181/2630405/AstroPix-novel-monolithic-active-pixel-silicon-sensors-for- future/10.1117/12.2630405.full#_=_	https://arxiv.org/abs/2209.02631
AstroPix: CMOS pixels in space	PIXEL 2022	https://pos.sissa.it/420/020	https://arxiv.org/abs/2302.00101
Development of an HV-CMOS active pixel sensor "AstroPix" for all-sky medium-energy gamma-ray telescopes	ICRC 2023	https://pos.sissa.it/444/644	not uploaded
AstroPix4 — a novel HV-CMOS sensor developed for space based experiments	JINST	https://iopscience.iop.org/article/10.1088/1748-0221/19/04/C04010	not uploaded
Performance evaluation of the high-voltage CMOS active pixel sensor AstroPix for gamma- ray space telescopes	NIMA	https://doi.org/10.1016/j.nima.2024.169762	https://arxiv.org/abs/2408.12891
The path toward 500 µm depletion of AstroPix, a pixelated silicon HVCMOS sensor for space and EIC	SPIE 2024	https://opticalengineering.spiedigitallibrary.org/conference-proceedings-of- spie/13093/130937S/The-path-toward-500µm-depletion-of-AstroPix-a- pixelated-silicon/10.1117/12.3018495.full#_=_	https://arxiv.org/abs/2407.05947v1
Development of a novel HV-CMOS active pixel sensor AstroPix for gamma-ray space telescopes	SPIE 2024	https://neurophotonics.spiedigitallibrary.org/conference-proceedings-of-spie/13093/130937P/Development-of-a-novel-HV-CMOS-active-pixel-sensor-AstroPix/10.1117/12.3018170.full#_=_	

Thank you! - AstroPix Team