Development of high gain / MTF CMOS electron detectors for transmission electron microscopes

Olivier Marcelot¹, Cécile Marcelot² ¹ISAE-SUPAERO, Toulouse, France <u>²CEMES-CNRS, Toulouse, France</u>

19th November, 2024

Transmission Electron Microscope (TEM)

incoming electrons

Nowadays, strategies developed by camera providers for improving the MTF:

- Back-thinning the substrate :
 - \rightarrow \bigcirc reduction of lateral diffusion of electrons
 - → → strong decrease in sensitivity (gain)
 - → demonstrated at 300keV [1]

Nowadays, strategies developed by camera providers for improving the MTF:

- Back-thinning the substrate :
 - \rightarrow \bigcirc reduction of lateral diffusion of electrons
 - → strong decrease in sensitivity (gain)
 - → demonstrated at 300keV [1]
- + Large pixel [2]: → less e- in adjacent pixels
 → small pixel number

[1] McMullan, Experimental observation of the improvement in MTF from backthinning a CMOS direct electron

detector, Ultramicroscopy, 2009

[2] Sannino, A rad-hard, 60µm pixel sensor optimized for the direct detection of electrons, IISW, 2021

Nowadays, strategies developed by camera providers for improving the MTF:

- Back-thinning the substrate :
 - \rightarrow \bigcirc reduction of lateral diffusion of electrons
 - → → strong decrease in sensitivity (gain)
 - → demonstrated at 300keV [1]
- + Large pixel [2]: → less e- in adjacent pixels
 → small pixel number
- Needs for new advanced TEM techniques (Cryo TEM, ...):
 - Reduce electron dose at 200keV improve the GAIN
 - Keep good MTF performances at 200keV

McMullan, Experimental observation of the improvement in MTF from backthinning ..., Ultramicroscopy, 2009
 Sannino, A rad-hard, 60μm pixel sensor optimized for the direct detection of electrons, IISW, 2021
 Yao 2020, Molecular Architecture of the SARS-CoV-2 Virus

Cryo-TEM

observation of

Goal of this study

- Propose new silicon substrates (thickness / doping) for detectors compatible with 200 keV electron beam:
 - Improving the detector gain
 - Keep / improve MTF performance

$$gain = \frac{integrated \ electrons}{incoming \ electrons}$$

Detector	Pixel type	substrate	Gain	MTF at half Nyquist
State of the art (Gatan K3, FEI Falcon)	3T – hardened by design	> 10 ¹⁵ B/cm ³ Back thinned < 15µm	< 40	0,2 - 0,3
Our goal	3T – hardened by design	< 10 ¹⁵ B/cm ³ Thicker substrate	>200	0,2 - 0,3

Tool: TCAD simulations, methodology demonstrated with in-situ measurements [3]

[3] Marcelot, A New TCAD Simulation Method for Direct CMOS Electron Detectors Optimization, ultramicroscopy, 2022

TCAD simulation settings

- TCAD tools do not provide options for particle simulations
- The electron simulation is simulated by means of 2 optical illuminations

Casino: Monte Carlo e- distribution

TCAD simulation settings

- Device: 3T pixel, pitch 8.5µm, 1.8V bias
- Comparison with a state of the art like detector, simulated on a 10µm substrate doped at 10¹⁷B/cm³[4]
- Substrates:
 - Epi doped at 10¹⁵B/cm³-10¹²B/cm³, thickness 5, 7, 15 and 30µm
 - Unthinned substrates
 - Back-thinned substrates (to 50µm)

[4] Krieger, Fast, radiation hard, direct detection CMOS imagers for high resolution transmission electron microscopy, IEEE NSSCR, 2011

Results for un-thinned substrates

Gain simulation for a 200 keV e- beam

	TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
	State of	200	1017	10	125	0,09
the art	300	10-7	10	27	0,14	

 The gain is x2,5 with unthinned substrate compared to the state of the art

- Much larger collection volume
- Reducing the epitaxy doping does not increase the gain : e- mainly generated deeply, far from the epitaxy region
- The gain increases with the epitaxy thickness, because e- are easily recombined in the highly doped substrate

Results for un-thinned substrates

TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
State of	200	10 ¹⁷	10	125	0,09
the art	300		10	27	0,14

- The MTF can be 2x higher compared to the state of the art
- Reducing the epitaxy doping increases the MTF for epi <7µm: a larger depleted volume reduces the collection in adjacent pixels
- Increasing the epitaxy thickness >7µm does not help because of the longest e- lifetime in epi layer → more collection in adjacent pixels

Results for un-thinned substrates

I	TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
	State of	200	10 ¹⁷	10	125	0,09
	the art	300		10	27	0,14
	unthinned	200	10 ¹³	7	325	0,23

- The MTF can be 2x higher compared to the state of the art
 - Best candidate: epi 10¹³B/cm³, 7µm
- Reducing the epitaxy doping increases the MTF for epi <7µm: a larger depleted volume reduces the collection in adjacent pixels
- Increasing the epitaxy thickness >7µm does not help because of the longest e- lifetime in epi layer → more collection in adjacent pixels

Results for 50µm back thinned substrates

TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
State of	200	10 ¹⁷	10	125	0,09
the art	300		10	27	0,14
unthinned	200	10 ¹³	7	325	0,23

- The gain is x2 with 50µm thinned substrate compared to the state of the art
- The lower collection volume induces less generated electrons and less signal... The conclusion is even worse for thinner substrates.
- Same observations related to epitaxy doping and thicknesses, compared to un-thinned substrates.

Results for 50µm back thinned substrates

TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
State of the art	200	10 ¹⁷	10	125	0,09
	300		10	27	0,14
unthinned	200	10 ¹³	7	325	0,23
50µ BS	200	1012	7	248	0,25

- The MTF is not higher compared to unthinned substrates → in opposition with [1]
- Compared to 300keV, 200keV e- are generated closer to the surface, inducing more enear the epitaxy layer. Back-thinning does not help as less e- can be recombined.
- Same observations related to epitaxy doping and thicknesses, compared to un-thinned substrates.

[1] McMullan, Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector, Ultramicroscopy, 2009

Results for 50µm back thinned substrates

- MTF may become even worse with 50µm back-thinned substrate with lower beam energy
- MTF simulation for a 150 keV e- beam .

TCAD simulation of 4 pixels after integration for 150keV electrons in a 10¹⁵B/cm³, 7μm epitaxy. Beam position: x=17μm.

- e- in un-thinned substrates are mainly recombined in the bulk
- For 50µm substrate, e- are not well recombined due to the lower bulk volume
 → collection in adjacent pixels → MTF

 This work demonstrates the possibility to develop new electron detectors with superior gain and MTF performances, based on substrate modifications:

TCAD	Beam energy (keV)	Epi doping (B/cm ³)	Epi thickness (μm)	Gain	MTF at Nyquist
State of the art, back- thinned substrate	200	1017	10	125	0,09
Un-thinned substrate	200	10 ¹³	7	325	0,23

- In contrary to previous study, it is shown that a back-thinned substrate (<50µm) does not help in improving the MTF with conventional beam energies (<200keV)
- Perspectives:
 - Perform future measurements on detectors based on low doped epitaxies
 - Study the possibility to use 4T pixels for improved gain conversion (CVF)
 - Develop a direct integration of e⁻ MC outputs into the TCAD workflow

Thanks for your attention... ... any questions?

Experimental set-up

- CMOS image sensor : 720 x 1280 pixels
 - 8,5µm pitch, 7µm epi
 - developed in a 180nm technology
 - Radiation hardened at >100 Mrad [1]
- Custom designed PCB for signal routing

Perspectives

- Perform future measurements on detectors based on low doped epitaxies
- Study the possibility to use 4T pixel for improved gain conversion (CVF)

