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Application

 Target?

o Particle counting

« High repetition rate possible (avoid non-detection of subsequent events)

Should also work at low flux (< 10e™ /ns) of incident electrons (IE)
Low noise / high SNR, with underlying purpose:
«— Low False Positive (FP) rate
— Low False Negative (FN) rate
Large total area of detector, subdivided in parallel operating “pixels”
Low energy (ke™) of IEs
*  We explore multiple options:

o PIN (p — intrinsic — n diodes, direct detection)

o APD (Avalanche Photodiodes, LGAP)

o SPAD (Single-Photon Avalanche Diodes, Geiger mode APD)

o Scintillators + visible light sensing.
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PIN diode for particle counting E

“Vhackbi
The straightforward solution: PIN AEas

o For ~ke~, Backside illumination is required p+71 (Ccc)f yCSDAT ]

o One IE will generate a charge cloud (CC) of electron- ‘
hole pairs

o CSDA: Continuous Slowing Down Approximation
o There are two important metrics here
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PIN diode for particle counting

* Which readout methods do we pursue?
o Continuous readout

« Bandwidth determines how quickly successive events R
can still be distinguished (< “dead” time) M\
« Typically, an RTIA (R-feedback Transimpedance N
Amplifier) P e
o Transit time 74, also affects pulse amplitudes! n ==Cin ==cC.

« Read noise performance affected by 1 L
o White noise: Rgp, Cip, P
o Flicker noise: C;,, size

o Integrated/sampled readout °
« Need to reset sometimes (= “dead” time) ._Ti’_.
« Typically, a CTIA (Charge Transimpedance Amplifier)
o Transit time t,, affects slope, not step height! '_I>TD°L"
- Read noise performance affected by n = Cin N

o White noise: C;,, P

o Flicker noise: C;;,, size
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APDs for particle counting

» Pixel is similar to a SPAD; the
analog readout circuit is similar to
a PIN diode readout

* Pro

o Circuit solutions identical to
those of PIN diodes

o The in-device gain reduces

false negatives a lot Oxide + metal layers
of SPAD wafer
+ Con Oxide + metal layers

of circuit wafer

o Sensitive to
Process/Voltage/Temperature
(PVT) variations, not trivial to
scale up, yield sensitive

o Guard ring structures can
take up significant space (fill
factor, increasing FN)
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SPADs for particle counting

Need dedicated “quench-reset” readout circuit
* Pro
o SPADs offer a very sharp timing resolution
« Con
o Quenching a SPAD means “dead” time
« Longer “dead” time means higher false negative rate
* Longer quenching is often required to reduce afterpulsing
o Quest for small pixels
* This means: many pixels (impacting yield and power)
« Peak currents scale with area
« Higher avalanche currents lead to more crosstalk
» Larger area pixels need longer quench times
» Guard ring structures take up significant space (fill factor, charge sharing, increasing FN)
o Sensitive to PVT variation, not trivial to scale up (yield)
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Scintillators for particle counting

* Pro
o Mature technology, shifts the “electron detection” challenge to “light detection”

« Con
o Hard to find scintillators with short decay and low eV /photon
* Hence the combination with SPADs - One photon should be enough to detect an event

o Secondary photons can be spread over multiple pixels
« Complication avoiding double counts by correlated events in neighboring pixels

IE

\
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(photons) Scintillator

SPAD SPAD SPAD SPAD EPI
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Comparison

« We did a comparing study of the techniques in the previous slides with first order approximations

Tacq = ONS
EIE ~ 10ke™

o o0 O 0o o o o o o o

SPAD (synchronized resets)

SPAD + Scintillator [synchronized resets)
SiPM (self-quenching SPAD's)

PIN {continuous)

APD [continuous)

PIN [sampled)
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o (0IEfacq.)

0.47
0.00
0.28
0.00
0.00
0.00

Rate approx. 10e™ /5ns
Scintillator: LaBrs: Ce (mono), 16eV /phot, t5.; = 16ns [2]
Circular detector, ¢ etector = 10mm
180nm technology parameters (average over multiple foundries), simplified analog circuits
SPAD: FF =~ 80%, DCR =~ 0.3cps/um?, AP ~ 0.1%

APD: FF = 80%
PIN: dgp; = 10um
Power max 4W for readout

o (1IEfacq.)

1.05
0.10
0.63
0.01
0.33
0.00

Error on the final estimate of total count

o (10IE/acq.)

3.00
0.21
1.63
0.04
1.67
0.02

o for image lag for a 10 to OIE step Femarks
A | First columns assume no image lag.
.26 Residual photons due to Scintillator decay lifetime are present.
0.38| First columns assume no image lag.
0.00| First columns assume no image lag.
0.00| First columns assume no image iag.
0.00| First columns assume no image lag.



PIN pixel

» For the pixel, we wish to have
o The largest possible pixel (for total power consumption)
o Alow junction capacitance C; (for noise)

o A short transit time t;,.~ns
« For that, extra TCAD efforts were made (in collaboration with Etesian)
o To avoid any badly defined behavior near the surface, we use a pinning layer
o Toimprove 14 and deplete the substrate, we need to apply a voltage to the backside

Cathode pixel 1 Cathode pixel 2 ; ]p

Size

3 f Fastest case

10 2 30 40
Common anode

18 November 2024 9



PIN pixel

« Worst case 14, happens when the |IE lands
near the edge of the pixel

o We observe in TCAD simulation “double
peaking”

o Working hypothesis:
« 3 “phases” of the charge cloud
» 1) Fast drift from backside to deep N
« 2) Slower drift/diffusion along deep N

» 3) Fast drift from deep N to N-
well/cathode
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Measurements

« Atest chip was made to verify results
o Backside illuminated
o ~45 variants
» Focus on CTIA-based PIN variants
« Some RTIA-based variants also available

 Fast RTIAs dedicated to measurement of
photocurrent

« Supported measurements

o Equivalent Time Sampling
o Digital readout method for FP and FN

18 November 2024

—
o
=
1))

1®)
(]
o)
o
=
—
)
3,
Q
0

u
=
Q)
B
-

@

W 8 0Oo@ 0O

High speed interface
Configuring/switching logic
In-pixel read-out circuit
Covered/pinhole/active pixel
Uncovered pixel
Dummy pixel

Electronical injection

4

puiselq ‘aoe

11



Measurements

« Emulating an incident electron (IE)
o Use alaser
« Laser pulse width should be negligible compared to 4,
« Emulating the small charge cloud
o Laser spot should be focused
— Maybe possible with optics, but likely not easy
— We attempt to use pinholes in a backside metal

o Wavelength should be chosen to have a similar
penetration depth as CSDA of an |IE

o Optical power should be attenuated such that the
same number of electrons are generated inside the
silicon

« Emulating noise

o A real IE-caused charge cloud will exhibit Fano

noise which is typically smaller than photon shot
noise!

18 November 2024 12



Measurements

« Support for analog measurements
clock sh

o Measuring high bandwidths on-chip is not
straightforward |
* Measurement circuitry will always signal o

“distort” due to parasitic capacitances
. . . CsaH
o Equivalent Time Sampling [3] I

* Open the S&H switch with low jitter at =
a point t;,, measure slowly after

* Use minimum Cgg,p, and very small
buffer to minimize added capacitance

(Off-chip)

By
?‘ @—Dout

Sample time

J

o Large kTC noise, so might want
average over multiple identical clock_sh
experiments —

« Slightly shift t; and repeat the analog output
experiment /\

* You can then reconstruct the

-« >

- —

N

waveform
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Measurements

« Support for digital measurements
o Measuring of false positives and false negatives using

laser pulses en aout
* FN: Apply/inject pulses and find out whether an event o
was detected "
o——~O0a_out

o Assess mismatch variation

« FP: Dark current will always cause a trigger with
CTIA-based variants if you wait long enough! _._l> *—o {>—0d_out

« Should be able to reconstruct a probability density
function -L*'ZS
o Laser shot noise vs. Fano noise
 We will measure a worse case, but can be modeled %

» Or use actual particles...
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Measurements

« Example result

o No pixel yet, instead we use
capacitive charge injection

* No measurement yet with laser
pulses

 No FP/FN measurement yet (also

CTIA example variant
Qinjected ~ 7.5ke”
P = 180ulW

Spikes are caused by
external clock edges

Time resolution ~150ps

with laser pulses)
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caeleste

Thank you
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