Presented at PIXEL2024 November 2024 Strasbourg

Design and measurement of a large CMOS pixel with nanosecond collection time

S. Boulanger, A. Kumar Kalgi, J. De Vroe, N. Van Opstal, S. Regev (Etesian), B. Dierickx

Application

- Target?
 - Particle counting
 - High repetition rate possible (avoid non-detection of subsequent events)
 - Should also work at low flux ($< 10e^{-}/ns$) of incident electrons (IE)
 - Low noise / high SNR, with underlying purpose:
 - \leftarrow Low False Positive (FP) rate
 - \leftarrow Low False Negative (FN) rate
 - Large total area of detector, subdivided in parallel operating "pixels"
 - Low energy (ke⁻) of IEs
- We explore multiple options:
 - \circ PIN (p intrinsic n diodes, direct detection)
 - APD (Avalanche Photodiodes, LGAP)
 - SPAD (Single-Photon Avalanche Diodes, Geiger mode APD)
 - Scintillators + visible light sensing.

PIN diode for particle counting

The straightforward solution: PIN

- \circ For $\sim ke^-$, Backside illumination is required
- One IE will generate a charge cloud (CC) of electronhole pairs
- **CSDA**: Continuous Slowing Down Approximation
- o There are two important metrics here

•
$$\tau_{tr}$$
, the transit time (collection time), $\approx \frac{a_{epi}}{\mu_e |\vec{E}|}$

$$I_{photo}(j\omega) \sim \frac{1 - e^{j\omega\tau_r}}{j\omega\tau_r} \Rightarrow f_{-3dB} \approx \frac{2.4}{2\pi \cdot \tau_{tr}}$$
[1]

- The junction capacitance
 - \circ Determines input capacitance C_{in}

$$C_j \approx \epsilon_{Si} \frac{A_{pix}}{d_{epi}}$$

18 November 2024

PIN diode for particle counting

- Which readout methods do we pursue?
 - o Continuous readout
 - Bandwidth determines how quickly successive events can still be distinguished (← "dead" time)
 - Typically, an RTIA (*R*-feedback Transimpedance Amplifier)
 - Transit time τ_{tr} also affects pulse amplitudes!
 - Read noise performance affected by
 - White noise: R_{fb} , C_{in} , P
 - Flicker noise: C_{in}, size
 - Integrated/sampled readout
 - Need to reset sometimes (= "dead" time)
 - Typically, a CTIA (Charge Transimpedance Amplifier)

 Transit time τ_{tr} affects slope, not step height!
 - Read noise performance affected by
 - \circ White noise: C_{in} , P
 - \circ Flicker noise: C_{in} , size

18 November 2024

APDs for particle counting

caeleste

 Pixel is similar to a SPAD; the analog readout circuit is similar to a PIN diode readout

• Pro

- Circuit solutions identical to those of PIN diodes
- The in-device gain reduces false negatives a lot
- Con
 - \circ Sensitive to
 - Process/Voltage/Temperature (PVT) variations, not trivial to scale up, yield sensitive
 - Guard ring structures can take up significant space (fill factor, increasing FN)

SPADs for particle counting

caeleste

Need dedicated "quench-reset" readout circuit

• Pro

- $\circ~$ SPADs offer a very sharp timing resolution
- Con
 - o Quenching a SPAD means "dead" time
 - Longer "dead" time means higher false negative rate
 - Longer quenching is often required to reduce afterpulsing
 - Quest for small pixels
 - This means: many pixels (impacting yield and power)
 - Peak currents scale with area
 - Higher avalanche currents lead to more crosstalk
 - Larger area pixels need longer quench times
 - Guard ring structures take up significant space (fill factor, charge sharing, increasing FN)
 - Sensitive to PVT variation, not trivial to scale up (yield)

Scintillators for particle counting

caeleste

• Pro

- o Mature technology, shifts the "electron detection" challenge to "light detection"
- Con
 - \circ Hard to find scintillators with short decay and low *eV*/*photon*
 - Hence the combination with SPADs → One photon should be enough to detect an event
 - $\circ~$ Secondary photons can be spread over multiple pixels
 - Complication avoiding double counts by correlated events in neighboring pixels

Comparison

caeleste

- We did a comparing study of the techniques in the previous slides with first order approximations
 - $\circ \tau_{acq} = 5ns$
 - $\circ ~ E_{IE} \approx 10 ke^{-}$
 - \circ Rate approx. $10e^{-}/5ns$
 - Scintillator: *LaBr*₃: *Ce* (*mono*), 16*eV*/*phot*, $\tau_{Sci} \approx 16ns$ [2]
 - \circ Circular detector, $\phi_{detector} = 10mm$
 - o 180nm technology parameters (average over multiple foundries), simplified analog circuits
 - SPAD: *FF* ≈ 80%, *DCR* ≈ 0.3*cps*/ μm^2 , *AP* ≈ 0.1%
 - APD: $FF \approx 80\%$
 - PIN: $d_{epi} \approx 10 \mu m$
 - Power max 4W for readout

Appear to be the most practical choice

/ /

Error on the final estimate of total count						
Property	σ (OIE/acq.)	σ (1IE/acq.)	σ (10IE/acq.)	σ for image lag for a 10 to 0IE st	ep/	Remarks
SPAD (synchronized resets)	0.47	1.05	3.00		/ 0.4	First columns assume no image lag.
SPAD + Scintillator (synchronized resets)	0.00	0.10	0.31		9.2	5 Residual photons due to Scintillator decay lifetime are present.
SiPM (self-quenching SPAD's)	0.38	0.63	1.63		/ 0.3	8 First columns assume no image lag.
PIN (continuous)	0.00	0.01	0.04	₩ /	0.0	D First columns assume no image lag.
APD (continuous)	0.00	0.53	1.67		0.0	D First columns assume no image lag.
PIN (sampled)	0.00	0.00	0.02	¥	0.0	D First columns assume no image lag.
PIN (sampled)	0.00	0.00	0.02	•	0.0	First columns assume no image lag.

18 November 2024

PIN pixel

- For the pixel, we wish to have
 - The largest possible pixel (for total power consumption)
 - A low junction capacitance C_j (for noise)
 - \circ A short transit time $\tau_{tr} \sim ns$
- For that, extra TCAD efforts were made (in collaboration with Etesian)
 - $\circ~$ To avoid any badly defined behavior near the surface, we use a pinning layer
 - \circ To improve τ_{tr} and deplete the substrate, we need to apply a voltage to the backside

PIN pixel

- Worst case τ_{tr} happens when the IE lands near the edge of the pixel
 - We observe in TCAD simulation "double peaking"
 - $\circ~$ Working hypothesis:
 - 3 "phases" of the charge cloud
 - 1) Fast drift from backside to deep N
 - 2) Slower drift/diffusion along deep N
 - 3) Fast drift from deep N to Nwell/cathode

Measurements

- A test chip was made to verify results
 - o Backside illuminated
 - \circ ~45 variants
 - Focus on CTIA-based PIN variants
 - Some RTIA-based variants also available
 - Fast RTIAs dedicated to measurement of photocurrent
- Supported measurements
 - Equivalent Time Sampling
 - $\circ~$ Digital readout method for FP and FN

- In-pixel read-out circuit
- Covered/pinhole/active pixel
- Uncovered pixel
- Dummy pixel
- Electronical injection

Measurements

- Emulating an incident electron (IE)
 - \circ Use a laser
 - Laser pulse width should be negligible compared to τ_{tr}
 - Emulating the small charge cloud
 - $\circ~$ Laser spot should be focused
 - \rightarrow Maybe possible with optics, but likely not easy
 - \rightarrow We attempt to use pinholes in a backside metal
 - Wavelength should be chosen to have a similar penetration depth as CSDA of an IE
 - Optical power should be attenuated such that the same number of electrons are generated inside the silicon
 - Emulating noise
 - A real IE-caused charge cloud will exhibit Fano noise which is typically smaller than photon shot noise!

Measurements

- Support for analog measurements
 - Measuring high bandwidths on-chip is not straightforward
 - Measurement circuitry will always "distort" due to parasitic capacitances
 - Equivalent Time Sampling [3]
 - Open the S&H switch with low jitter at a point t_{sh} , measure slowly after
 - Use minimum $C_{S\&H}$, and very small buffer to minimize added capacitance
 - Large *kTC* noise, so might want average over multiple identical experiments
 - Slightly shift t_{sh} and repeat the experiment
 - You can then reconstruct the waveform

Measurements

• Support for **digital measurements**

- Measuring of false positives and false negatives using laser pulses
 - FN: Apply/inject pulses and find out whether an event was detected
 - $\circ~$ Assess mismatch variation
 - FP: Dark current will always cause a trigger with CTIA-based variants if you wait long enough!
 - Should be able to reconstruct a probability density function
- $\circ~$ Laser shot noise vs. Fano noise
 - We will measure a worse case, but can be modeled
 - Or use actual particles...

Measurements

- Example result
 - No pixel yet, instead we use capacitive charge injection
 - CTIA example variant
 - $Q_{injected} \approx 7.5 ke^{-1}$
 - $P \approx 180 uW$
 - Spikes are caused by external clock edges
 - Time resolution ~150ps

Voltage (V)

- No measurement yet with laser pulses
- No FP/FN measurement yet (also with laser pulses)

References

- [1] Wolfgang W. Gärtner. "Depletion-Layer Photoeffects in Semiconductors." *Physical Review*, 116(1):84–87, October 1959.
- [2] E. V. D. van Loef, P. Dorenbos, C. W. E. van Eijk, K. W. Kramer and H. U. Gudel. "Scintillation properties of LaBr3 : Ce3+ crystals: fast, efficient and high-energy-resolution scintillators. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment", 486:254-258, 2002.
- [3] K. Rush, D. J. Oldfield "A Data Acquisition System for 1-GHz Digitizing Oscilloscope," Hewlett-Packard Journal, vol. 37, No. 4, pp. 4- 11, April 1986.

Thank you

18 November 2024