The 11th International Workshop on Semiconductor Pixel Detectors for Particles

ALICE ITS2: overview and performance

Artem Isakov*, on behalf of the ALICE collaboration

[*] Nikhef, Netherlands

Outlook

ALICE experiment in Run 3

Inner Tracking System 2 upgrade

ITS Performance in Run 3 with pp and Pb-Pb

Summary and outlook

PIXEL 2024

ALICE in Run 3

Study of Quark Gluon Plasma in heavy-ion collisions at LHC:

- Particle identification in large p_{T} range, a special interest in low- p_{T}
- Reconstruction of beauty and charm hadrons
- Operations in high-multiplicity environment

Goals of ALICE upgrade in Long Shutdown 2

- 13 nb⁻¹ Pb-Pb collisions (x100 w.r.t Run1+2)
- Data-taking of Pb-Pb collisions at 50 kHz of interaction rate
- Improved vertex reconstruction and tracking capabilities
- Upgrade of several detector systems: ITS, MFT, TPC, FIT
- New framework for online/offline analysis (O²)

PIXEL 2024

<u>Inner Tracking System 2 (ITS2) design goals</u>

Improved position resolution for low momenta particles (6 times in z direction, 3 times in $r\varphi$ direction):

- First layer is closer to Interaction Point: 39 mm → 23 mm
- Smaller material budget: ~1.14% $X_0 \rightarrow$ ~0.36% X_0 per layer (for the inner layers)

Improved tracking efficiency:

- Increased granularity: 6 layers → 7 pixel layers
- Smaller pixel size: 50 x 425 μ m² \rightarrow O(30 x 30 μ m²)

Faster readout:

• Pb-Pb 1 kHz → 67 kHz, 202 kHz for pp

PIXEL 2024

ITS2 layout

Inner Barrel (IB) — Layers 0 - 2:

- Stave Built from 9 ALPIDE chips
- Length: 27 cm
- Sensor thickness: 50 µm
- Material budget: ~ 0.36 % X_0 /layer
- 1 high-speed link of 1.2 Gbit/s per chip

Outer Barrel (OB) — Layers 3 - 6:

- Stave built from HICs: 2 rows by 7 chips
- Length: 84 cm (middle layer), 150 cm (outer layer)
- Sensor thickness: 100 µm
- Material budget: ~ 1.1 % X₀/layer
- 2 high-speed links of 400 Mbit/s per HIC

- 7 layers (inner/middle/outer): 3/2/2
- 192 staves (inner/middle/outer): 48/54/90
- Ultra-lightweight support structure and cooling
- 10 m² active silicon area
- 12.5×10⁹ pixels

PIXEL 2024

MAPS for ITS2

VRST

1024 pixels / 30 mm шШ 15 pixels 512 **ALICE PIXEL DETECTOR (ALPIDE)**

- In-pixel amplification and shaping, discrimination and **Multiple-Event Buffers**
- Analog DACs for front-end biasing
- Power consumption < \sim 47 mW/cm⁻²
- Fake-hit rate << 10⁻⁶ /hits/cm²
- 1.2 Gbit/s on-chip high-speed link
- Radiation hardness for MAPS:
 - Total Ionizing Dose > 270 kRad 0
 - Non Ionizing Energy Losses > ~ $1.7 \cdot 10^{12}$ 1 MeV n_{eq} cm⁻² 0

NWELL TRANSISTORS NWELL DIODE NMOS DIODE PMOS GND NWELL PWELL PWELL PWELL -V_{BB} 1018 cm-3 DEEP PWELL DEEP PWELL Drift Drift ^eDiffusion N, ~1013 cm-3 Epitaxial Layer P-Substrate P++

Pixel Technology:

- 180 nm CMOS imaging process by TowerJazz with Pixel pitch 29 µm × 27 µm
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (25 µm) on p-type substrate
- Low capacitance (~fF) thanks to small n-well diode (2 µm diameter)
- Reverse bias voltage (-6 V < V_{BB} < 0 V) to vary depletion zone, default $V_{BB} = 0 V$
 - Deep P_{WELL} shields N_{WELL} of PMOS transistors

PIXEL 2024

ITS2 system overview

PIXEL 2024

General timeline of the project

2011: Start of the ALPIDE sensor R&D
12/2016: Sensor production started
01/2021: ITS installation in the cavern
10/2021: First pp pilot beam test
11/2023: First heavy ion run
09/2024: 80 pb⁻¹ of pp data is taken

Module Assembly Machine

OB installation

OB + bottom half-barrel of IB

Run 3 started on 5th July 2022 with pp collisions at √s=13.6 TeV:

- ITS participated in more than 2000 hours of data taking
- Crucial detector for data-taking 100% participation in physics runs
- Recorded data:
 - **Total pp** $(\sqrt{s} = 13.76 \text{ TeV})$: **82 pb⁻¹**
 - **Total Pb-Pb** ($\sqrt{s_{NN}} = 5.36 \text{ TeV}$: **2.16 nb⁻¹**
 - pp reference ($\sqrt{s} = 5.36 \text{ TeV}$): 5.3 pb⁻¹
- Estimation of total absorbed dose for L0 / L1 / L2 / L3:
 - TID: ~43 / 25 / 15 / 0.5 kRad
 - NIEL: ~4.3·10¹¹ / 2.9·10¹¹ / 1.8·10¹¹ / 1.6·10¹⁰ 1 MeV n_{eq} cm⁻²

PIXEL 2024

ITS2 performance in RUN3

- Continuous operation of 24k chips: loss of ITS acceptance due to lane errors < 1%
- Advanced system for auto-recovery during data-taking:
 - Corrupted data: filtering out problematic data + detection in QC
 - Clock issues on GBT Links: automatic re-configuration of lane
 - Radiation induced errors: RU scrubbing + firmware update
- Tools to monitor and record status of each ITS chip over time -> Important input for MC anchoring

Status of the IB chips during data-taking of Pb-Pb collisions at 5.36 TeV with time resolution of 1 sec

Inner Barrel Chip Status

Detector performance: Tracking

Impact parameter resolution on a base of Pb-Pb Run 3 data: 2ximprovement at $p_T = 1 \text{ GeV}/c$ IB spans from 2.2 to 4 cm: ITS can track particles before their weak decay

Possibility to measure non-prompt cascades with ITS

PIXEL 2024

Detector performance: Fake-hit rate (FHR)

Level of the fake-hit rate always below at least by factor of 10 from project requirements and could be controlled by:

- Noise-pixel masking
- Threshold re-tuning

ALI-PERF-575745

0.15 ‰ of pixel are masked in total on the full detector

- OB: stricter masking of noise pixels due limited bandwidth
- IB: priority on detection efficiency

PIXEL 2024

Detector performance: Threshold level

December 2022: Detector was tuned to 100 *e*⁻ **Pb-Pb Run 2023:** a mild decrease in the average THR in IB:

- Magnitude depends on the radiation load
- FHR level is under control during all that period **June 2024:** Detector was tuned again to 100 *e*⁻

THR trend corresponds to the R&D observations:

- R&D: Initial increase in THR followed by its decay with increase of absorbed TID
- ITS: Inner layers (higher dose) → decrease of THR
 Outer layers (lower dose) → slight rise of THR

PIXEL 2024

Detector performance: Quality Control

Several QC online tasks to monitor data and MC simulation quality:

- Front-end electronics: triggering issues, status of lanes and payload
- Hit Occupancy: level of FHR, detection of hit anomalies
- Clusterization: monitoring cluster size, topology etc.

- Track properties: reconstruction issues
- Calibration quality: noise, THR, biases
- Decoding/ Chip Status: missing chips and corrupted data

PIXEL 2024

Detector performance: Pb-Pb beam background in 2023

Example of L0_04 stave hitmap with a shower produced by particle hitting beam pipe

QC indicated problematic region at φ = 2.4, and r = 2 to 3 cm during the first minutes of the Pb-Pb beam

This region was not instrumented by previous generation of ITS where LO started at $r \sim 4$ cm

ITS Lanes status during Pb-Pb background event

PIXEL 2024

Background also visible in the data rate of the neighboring staves and reaching L3

- The source was promptly identified and largely mitigated (see report by R. Bruce) \rightarrow only first 10% of the statistics affected
- The inflicted radiation damages due to the background was estimated to ~1.5% of the entire lifetime dose
- Readout Unit firmware improved to better cope with such large events by dropping the next events

Similar long tracks could be detected during pp collisions with much rare frequency: hitmap of L0 04

Detector performance: d*E*/d*x* - color run

ITS Color run: usage of Time over Threshold information to access the particle energy loss in ALPIDE sensitive layer

Special detector parameters during color run:

- Analogue front-end configured to achieve analogue pulse length proportional to deposited charge
- High readout rate (2.2 MHz) to oversample analogue front-end response
- Only feasible at < 1 kHz of pp collisions

Proof of concept of PID with binary readout MAPS and a 25 μm thick sensitive layer

dE/dx spectrum versus track rigidity in the ALICE ITS2 Inner Barrel

PIXEL 2024

Summary

ITS2 successfully operated in pp and Pb-Pb collisions:

- First fully MAPS based tracking detector at the LHC
- Largest and most granular pixel detector to date with impact parameter resolution ~50 μ m for particles with p_T < 1 GeV/c
- Recorded more than 80 pb⁻¹ of pp collisions at $\sqrt{s} = 13.6$ TeV and 500 kHz of interaction rate
- Stable performance with less than 1% loss of acceptance due to detector errors
- Many lessons learned during Run 3 operations \rightarrow important inputs for ITS3 and ALICE 3

PIXEL 2024

Additional Slides

ITS material budget for IB

PIXEL 2024

LHC background in Pb-Pb Run 2023

Confirmed by MFT and ZDC via off-time signals from Beam 1

Explanation: Shower created from ion fragments traveling inside the beam, hitting IP2 TCT collimators, ~114 m from IP2

Mitigated on October 4th by adding an orbit bump at the ALICE TCTs

PIXEL 2024

Detector performance: Threshold level

Measurements of detection efficiency and FHR level as a function of Threshold charge for different ALPIDE prototypes.

- Choice of operational margins for THR is driven by FHR level (< 10⁻⁶/pixel/event) and detection efficiency >99%
- Minimal observed THR of 85 e⁻ on L0 still lies within optimal ranges → no excessive noise during data-taking

Stability of threshold values across all chips after tuning to 100 e⁻:

- In-chip RMS of ~20 e⁻ -> in line with R&D measurements
- Chip-by-chip variations are a lot smaller than the pixel-by-pixel variations inside one chip
- Total ENC noise is of 5 e⁻

PIXEL 2024

Performance of ALPIDE: hit resolution

Beam test studies of irradiated ALPIDEs:

- Hit-position resolution 4-5 μ m for thresholds below 140 e⁻ < 8 μ m
- Cluster size depends on the threshold setting due to charge sharing

PIXEL 2024

ITS Readout system

PIXEL 2024