

<u>Development of high radiation</u> <u>tolerance detector with CIGS</u>

K. Itabashi^A, M. Togawa^A, J. Nishinaga^B, T. Isobe^C, H. Okumura^D, M. Miyahara^A

KEK^A, AIST^B, RIKEN^C, Univ. of Tsukuba^D

- Particle detector with high radiation tolerance in particle physics
- Development of CIGS detector with high radiation tolerance
 - Introduction (CIGS solar cell)
 - Particle detector development
 - Investigation of recovery mechanism of CIGS
- Conclusions

Particle detector in hadron collider experiment

Pixel2024

In hadron collider experiments, silicon detectors are most widely used for particle tracking detectors.

The inner detector is exposed to high radiation levels, leading to the degradation of various semiconductor properties due to radiation damage.

Characters	LHC	HL-LHC	HE-LHC/FCC
Start year	On going	~2029	Future
Collison energy √s [TeV]	14	14	27/100
Luminosity /LHC (0.7 MGy)	× 1	× 10	× 100
Particle detector	Silicon	Silicon	??

High energy experiment (LHC) plans to construct the higher energy and luminosity accelerator for the new particle search

Need to development of high radiation tolerant particle detector → New semiconductor detector ??

Cu(In, Ga)Se₂ semiconductor (CIGS solar cells)

A CIGS is an alloy semiconductor of CuInSe₂ and CuGaSe₂, which is widely developed as a solar cell.

<complex-block>

CIGS unit cell. Red=Cu,Yellow=Se,Bule=In/Ga

CIGS has high absorption coefficient > 10^5 cm⁻¹ for photons with E ≥ 1.5 eV (Si~ 10^3 cm⁻¹)

- + High 20% efficiency (same level as Si) with 2-4 μm thick CIGS layer \rightarrow Lightweight and Flexible
- Low deposition cost \rightarrow possible to make large-area
- Radiation damage recovery with low temperature annealing (~100°C)

Pixel2024

Radiation hardness semiconductor (CIGS)

CIGS recovered radiation damage through heat annealing around 100°C

 \rightarrow Suspended ions like Cu^+ expected to be restored to atomic defects

CIGS solar cells recovered from high radiation damage $(10^{16} MeV \cdot n_{eq}/cm^2)$

 \rightarrow CIGS semiconductor has the potential to be a particle detector with high radiation tolerance!

Pixel2024

November 20, 2024

Development of CIGS detector

Specifications of CIGS detectors

- p-type (CIGS), n-type (CdS)
- thickness 2 μm
- Active area : 5 mm²/channel
- Operation Voltage : -2 V

Pixel2024

November 20, 2024

Irradiation experiment at HIMAC

Investigation of detector performance recovery by thermal annealing Detector performances : collected charge (Q) and leakage current (I)

Pixel2024

Study of the recovery mechanism by thermal annealing

After 2 hours thermal annealing at 130 °C, Collected charge from ¹³²Xe⁵⁴⁺ and leakage current were recovered to the same level as before irradiation → Decreasing defect levels created by radiation damage

Pixel2024

November 20, 2024

130°C annealing

~30 nA

25 TIME [hours]

Study of the recovery system by thermal annealing (2)

Pixel2024

November 20, 2024

Recovery dependency on annealing condition

Irradiated 70 MeV proton to CIGS solar cells (7 \times 10^{15} n_{eq}) at CYRIC

- Measured current value (J_{SC}) with zero bias voltage at 25°C
- Three difference annealing process (90°C, 110°C, 130°C)

CIGS solar cells after proton irradiation

Pixel2024

Excitation energy during thermal annealing

Arrhenius plot : $\ln(\mathbf{k}) = -\frac{E_a}{k_b T} + \ln(A)$ (k: Reaction rate constant)

(A : constant value, k_b : Boltzman const.)

Arrhenius plot with CIGS soler cells

defect	Creation energy [eV] [1]	
V _{Cu}	0.63	1. S
V _{In}	3.21	
V_{In}^{2-}	3.62	
V_{In}^{3-}	4.29	
Cu_{In}^-	1.83	
Cu_{In}^{2-}	2.41	
In ⁺ _{Cu}	1.85	122210
In ²⁺ Cu	2.55	1. A. C.
In ³⁺	3.34	1 March

Excitation energy $E_a \sim 1.0 \text{ eV}$ during thermal annealing between $90 - 130^{\circ}C$

Cupper ions are activated and created cupper vacancies $\rightarrow Cu^+ + V_{Cu}^-$

Pixel2024

Defects measurement by DLTS after proton irradiation

Deep Level Transient Spectroscopy (DLTS) is major technique used to measure deep-level defects in semiconductor.

After proton irradiation with $7 \times 10^{15} \text{ MeV} \cdot n_{eq}/\text{cm}^2$, In-vacancy (V_{In}) and Cu-site-In (In_{Cu}) defects are observed by DLTS measurement.

Pixel2024

Defects measurement by DLTS after Annealing

After 130° C annealing for one hour, radiation defects (V_{In}, In_{Cu}) are decreased.

As a result of Arrhenius plot fitting, Cu^+ and V_{Cu}^- ions are activated during annealing. $\rightarrow V_{In}$ and In_{Cu} defect levels are reduced by neutralizing with Cu^+ and V_{Cu}^- ions

Pixel2024

November 20, 2024

Outlook for CIGS detector development

CIGS deposition process :

- Low-temperature 300 ~ 500°C
- High deposition rate $\sim 1 \,\mu m/hour$
- Direct deposition onto the substrate

Due to the low thermal load on the substrate, direct deposition onto ASICs is promising.

We aim to develop a pixel-type CIGS detector by directly depositing CIGS onto an ASIC substrate.

Not need bump-connection

CIGS sensor

Pixel2024

particle

electrode

ASIC

November 20, 2024

Conclusions and outlook

Conclusions

- The CIGS semiconductor is known to recover from radiation damage, and this ability also actives for the particle detector confirmed by the HIMAC experiment.
- As a result of DLTS measurement, the defect levels of V_{In} and In_{Cu} were observed in the temperature range from 80K to 300 K after proton irradiation with a fluence of $7 \times 10^{15} \text{ MeV} \cdot n_{eq}/\text{cm}^2$. Moreover, these defects were recovered by 130°C annealing for 1 hour.
- From Arrhenius plot fitting, the V_{Cu}^- and Cu^+ were activated during thermal annealing ($\rightarrow Cu^+ + V_{Cu}^-$) and they expected to bind V_{In} and In_{Cu} defects to achieve electrical neutrality.

<u>outlook</u>

• CIGS adopts a direct deposition method onto the substrate, and due to the low deposition temperature, it exerts minimal thermal stress on the substrate. We are currently attempting direct deposition onto the ASIC.

Pixel2024

November 20, 2024

Thank you for your attention!

November 20, 2024 16/15

Thickness dependence of CIGS detector peformances

The collected charge is proportional to depletion width $(Q \propto W)$.

Both of depletion width (V=-2V) are about 2 μm , but collected charge of 5 μm CIGS detector was 2.5 times larger than one of 2 μm CIGS detector

Is it possible to collect charges in non-depletion region ??

Pixel2024

November 20, 2024

Energy gradient of CIGS layer

CIGS is an alloy semiconductor $CuInSe_2$ and $CuGaSe_2$. Energy gap of CIGS changes with Ga composition ratio (GGI=[Ga]/[In]+[Ga]). $1.01 \text{ eV} [GGI = 0] < E_g < 1.64 \text{ eV} [GGI = 1]$

Pixel2024

November 20, 2024

Proton irradiation experiment at CYRIC

CYRIC experiment : Irradiated 70 MeV proton to CIGS solar cells ($7 \times 10^{15} n_{eq}$)

→ Study the heating time and temperature dependences of recovery mechanism

CIGS solar cells (AIST)

Current recovery dependence of annealing time

The measurement current with incident sunlight is including dark current. Excluded dark current : $J = J_{LIGHT} - J_{DARK}$

Pixel2024

Heating temperature dependence of recovery speed

I annealed CIGS solar cells at three differential temperatures (90°C, 110°C, 130°C).

November 20, 2024

22

Pixel2024

Depletion width at each annealing time

Pixel2024

November 20, 2024

Current recovery dependence of annealing time

The measurement current with incident sunlight is including dark current. Excluded dark current : $J = J_{LIGHT} - J_{DARK}$

Pixel2024

November 20, 2024

<u>1. Study of Thickness dependence of CIGS</u> (Collected Charge from xenon signal)

Collected charge evaluation: Xe beams (p=400 MeV/u) were irradiated to 2 μ m and 5 μ m CIGS semiconductor detectors, respectively.

Pixel2024

November 20, 2024

<u>1. Study of Thickness dependence of CIGS</u> (depletion width measuremnt)

Amount of charge collected is proportional to depletion layer thickness $Q_{det} \propto W$

Depletion width (W) can be obtained by capacitance (C_j) measurement $C_j \equiv dQ/dV = dQ/(WdQ/\varepsilon_s) = \varepsilon_s/W$ [W : depletion width, ε_s : permittivity (= 13.5 ε_0)]

Pixel2024

November 20, 2024

Evaluation of depletion layer width after irradiation and thermal annealing

The depletion layer width can be obtained by capacitance measurement $C_j \equiv dQ/dV = dQ/(WdQ/\varepsilon_s) = \varepsilon_s/W$ $[W : depletion width, \varepsilon_s: permittivity (= 13.5\varepsilon_0)]$

		СН	Before irradiation	After irradiation (0.8 MGy)	After annealing 130°C, 2h
	Depletion width [um] at V=-2V	CH0	1.93 (1)	1.17 (0.61)	1.31 (0.68)
A PARTIN A		CH1	1.93 (1)	1.11 (0.57)	1.20(0.62)

After irradiation : comparable with decreasing ratio of collected charge ~ 0.6 After annealing : Not sufficient of recovering

Pixel2024

November 20, 2024

Observation of radiation damage recovery in HIMAC experiment

M. Togawa et al 2024 JINST 19 C05042

Both collected charge and leakage current were mostly recovered by 130°C annealing (decreasing defect levels created by radiation damage). → Investigation of defect levels in CYRIC experiment

Pixel2024

November 20, 2024 28

Study of defect levels created proton irradiation (CYRIC)

CYRIC experiment : Irradiated 70 MeV proton to CIGS solar cells $(7.5 \times 10^{15} n_{eq})$ Study of defect levels by Deep Level Transient Spectroscopy (DLTS) method

Pixel2024

November 20, 2024

Deep Level Transient Spectroscopy

Pixel2024

November 20, 2024

Arrhenius Plot

Trap energy level E_t can be obtained by Arrhenius plot fitting

Pixel2024

November 20, 2024 31

Candidate of defect levels created by proton irradiation

Electron (donor) trap (E_T) : $\Delta E = E_C - E_T = 0.44 \pm 0.02 \text{ eV}$ Hole (acceptor) trap (E_T) : $\Delta E_V + E_T = 0.55 \pm 0.1 \text{ eV}$

Trap defect	Defect level [1]	Electrical properties	
V _{Cu}	$E_{V} + 0.03$	acceptor	
V _{In}	$E_{V} + 0.17$	acceptor	Hole trap
V ²⁻	$E_{V} + 0.41$	acceptor	Candidates
V ^{3–}	$E_{V} + 0.67$	acceptor	
In ²⁺	$E_{c} - 0.34$	donor	electron trap
In ¹⁺	$E_{c} - 0.25$	donor	candidates
Cu _i +	$E_{c} - 0.20$	donor	Cu

[1] A. Zunger et al., 26th IEEE Phytovoltaic Specialists Specialists Conf. (1997).

Pixel2024

November 20, 2024

32

trap

Study of recovery mechanism

In the chemical reaction $(X + YZ \leftrightarrow XY + Z)$, the correlation between excitation energy E_a and reaction velocity constant k were described by Arrhenius equation as

$$\mathbf{k} = A \exp\left(-\frac{E_a}{k_B T}\right)$$
 (k_B : Boltzmann const., A: const.).

By measuring an excitation energy, the activated atoms during thermal annealing can

Pixel2024

November 20, 2024

Discussion

Arrhenius plots from admittance spectroscopy

In the previous study, CIGS solar cells with 0.37 MeV proton irradiation at room temperature (fluence : $\sim 10^{13} \text{ cm}^{-2}$) had V_{Cu} and In_{Cu} defects [1].

On the other hand, DLTS method observed In_{Cu} and V_{In} defects after 70 MeV proton irradiation at -15° C (fluence $\sim 7.5 \times 10^{15} n_{eq}$).

Arrhenius plots from DLTS (our study)

The defect level of V_{Cu} is low $(E \sim 13 \text{ meV})$. It has sensitive to lower temperature region (≤ 77 K). But we successfully observed V_{In} defect in DLTS method.

34

Pixel2024