

Performances of the first full-scale HYLITE readout chip and the prototype module of SHINE XFEL

Mujin Li¹, Wei Wei¹, Jie Zhang¹, Xiaoshan Jiang¹, Xudong Ju², ZhengHeng Li², Peng Liu², Qionghua Zhai², Tao Sun³, Zhen Sheng³, Huaxiang Yin⁴, Gaobo Xu⁴, Peng Sun⁴, Zhi Liu²

- 1 Institute of High Energy Physics, Chinese Academy of Science.
- 2 ShanghaiTech University.
- 3 Shanghai Institute of Microsystem and Information Technology, CAS.
- 4 Institute of Microelectronics, CAS.

- Introduction: SHINE XFEL & STARLIGHT detector
- Chip Design of HYLITE
- Module Design and Production
- Test results
 - ASIC Performances
 - Module Preliminary Test
- Conclusions

Institute of High Energy Physics Chinese Academy of Sciences

Introduction: SHINE XFEL & STARLIGHT detector

- Chip Design of HYLITE
- Module Design and Production
- Test results
 - ASIC Performances
 - Module Preliminary Test
- Conclusions

SHINE XFEL

Shanghai HIgh repetitioN rate XFEL and Extreme light facility

- 3 FEL beamlines: FEL-I, FEL-II, FEL-III
- Photon Energy: 0.4~25 keV
 - FEL-I: 3~15 keV
 - FEL-II: 0.4~3 keV
 - FEL-III: 10~25 keV
- Pulse Duration: 20~50 fs (5~200 fs)
- Repetition Frequency: 10kHz (1MHz)
- Peak Brightness: 10³² ~10³³ photons/µm²/rad²/s/0.1%BW

Typical Time Structure of the SHINE Photon Beam

Ref:doi:10.18429/JACoW-FEL2017-MOP055

STARLIGHT Detector

Institute of High Energy Physics Chinese Academy of Sciences

- SemiconducTor Array detectoR with Large dynamic ranGe and cHarge inTegrating readout
- The first step is to develop a single module detector with 200µm pixel pitch and 1kHz frame rate to explore and verify the whole production process.

Specs	Ultimate Parameters	The First Step
Sensor	500 μm silicon PIN	/
Pixel Size	100μm×100μm	200µm×200µm
Array Size	128×128	64×64
Dynamic range	1~10000 ph./pulse/pixel @12 keV	/
Frame rate	12kHz (continuous readout)	1kHz
Detector	A 4M pixel detector in vaccum, quadrant movable	2*8 ASIC module

Institute of High Energy Physics Chinese Academy of Sciences

Introduction: SHINE XFEL & STARLIGHT detector

• Chip Design of HYLITE

Module Design and Production

• Test results

- ASIC Performances
- Module Preliminary Test

Conclusions

HYLITE: the Readout Chip

Institute of High Energy Physics Chinese Academy of Sciences

 HYLITE (High dYmamic range free electron Laser Imaging deTEctor) is a chargeintegration pixel detector readout chip, which is designed for SHINE STARLIGHT Detector.

 HYLITE (High dYmamic range free electron Laser Imaging deTEctor) is a chargeintegration pixel detector readout chip, which is designed for SHINE STARLIGHT Detector.

HYLITE200F

- Technology: 130 nm 1P8M CMOS
- Pixel Pitch: 200 μm Array Size: 64 × 64
- In-Pixel ADC
- Automatic gain switching with 3 gains
- Frame Rate: 6.3 kHz Maximum (@400MHz clock)
- Power Consumption: <50 μW/pixel</p>

Institute of High Energy Physics Chinese Academy of Sciences

Introduction: SHINE XFEL & STARLIGHT detector

• Chip Design of HYLITE

Module Design and Production

• Test results

- ASIC Performances
- Module Preliminary Test

Conclusions

Sensor & ASIC Wafer Test

8-inch sensor wafer

ASIC Wafer Probe Card

ASIC Wafers

PIXEL -LM

Wafer

Chip-1

Chip-2

Chip-3

Chip-4

Chip-5

Institute of High Energy Physics Chinese Academy of Sciences

Sensor

- Large Area: 10.5cm*2.8cm
- Manufactured by photolithography graphic splicing
- Classified into 5 levels
- The A+ and A levels are accepted for bump bonding.
- ASIC
 - level 1, 8, and 9 are accepted.
 - Average yield of 5 wafers: 83.7%
 - Ref: doi:10.1016/j.nima.2023.168388

18th November 2024

PIXEL2024 - Strasbourg

Module Mounting: preparation

Module Structure and Corresponding Temp. Factors

Bump Bonding Process Verification with Dummy Dies

Institute of High Energy Physics Chinese Academy of Sciences

Wire-bonding board

Thermal simulation of the wire-bonding board

Bump Quality Verification

Ref: doi:10.1016/j.nima.2024.169676

Modules

Institute of High Energy Physics Chinese Academy of Sciences

Different Scales of the Prototype Module

2*8 ASICs mounted on the module PCB without sensor

Testing Setup

Readout FPGA Board

Structure of the readout System

- The core of the chip and module testing setup is of the back-end FPGA board: RTM
- As the first step, chips are read out in sequence. Parallel readout is on developing.
- Internal calibration circuits and X-ray tube are adopted as the input source.

Test Environment

Institute of High Energy Physics Chinese Academy of Sciences

- Introduction: SHINE XFEL & STARLIGHT detector
- Chip Design of HYLITE
- Module Design and Production
- Test results
 - ASIC Performances
 - Module Preliminary Test

• Conclusions

Dynamic Range & Gain by Self-Cali

200

100

10⁰

10¹

With Sensor

 10^{2}

Equivalent Photons @ 12keV

10³

Institute of High Energy Physics Chinese Academy of Sciences

 1 "Photon" is generated by an 8-mV step pulse and internal capacitors, which need further calibration.

16

 10^{4}

10⁴

Noise

ENC: 386 e- vs. 487e- @ single photon injection.

- X-ray tube test shows the pedestal, single-photon peak, and two-photon peak.
- The absolute calibration will be carried out on a synchrotron beamline.

PIXEL2024 - Strasbourg

Static Imaging Test

Institute of High Energy Physics Chinese Academy of Sciences

• Preliminary Test Without Calibration

Dynamic Frame Rate Test

Institute of High Energy Physics Chinese Academy of Sciences

18th November 2024

PIXEL2024 - Strasbourg

Institute of High Energy Physics Chinese Academy of Sciences

- Introduction: SHINE XFEL & STARLIGHT detector
- Chip Design of HYLITE
- Module Design and Production
- Test results
 - ASIC Performances
 - Module Preliminary Test

• Conclusions

Conclusions

- HYLITE200F is the first full-scale engineering-run chip of HYLITE. The ASIC shows correct functions and good yields.
- Imaging tests indicate that the module works properly and the frame rate can reach the goal of 1 kHz.
- As the next step, the bump-bonding process will be improved further.
 Detailed tests and calibrations will be carried out on the full-size module.

Institute of High Energy Physics Chinese Academy of Sciences

Back Up Slides

- S/H: Sample and Hold Circuit
- Comparator: Generates the stop signal of counting
- Counter/Shifter: Based on a 10-bit Linear Feedback Shift Register (LFSR), working frequency: 50 MHz
- MUX: Switches modes between counting and shifting
- Gain Latches: 2-bits registers latches gain, located in gain-switching circuits
- Power Consumption: 7.5 μW

PIXEL2024 - Strasbourg

Counting VS Integrating

Institute of High Energy Physics Chinese Academy of Sciences

 "Zero Noise" but photons are piled up. All of the Charges are integrated including noise.

Calibration Block

 Covers Full Dynamic Range of 10000 photons @12 keV

Voltage Mode

- High Linearity
- Small Input Range
- 8 mV amplitude voltage pulse -> a 12 keV Photon ("equivalent photons" by calculating input charges)

• Current Mode

- Large Input Range
- Worse Linearity
- DAC Code=1, 150 ns width digital pulse -> 10 12 keV Photons

Energy Linearity

Institute of High Energy Physics Chinese Academy of Sciences

