

10µm Global Shutter Pixel for Radiation Tolerant CMOS Image Sensors

Presenter: Pedro Sants **Authors**: P. Santos, I. Hafizh, P. Leroux, G. Meynants 20/11/2024

Agenda

- Motivation and Global Shutter operation introduction;
- CDS in Image Sensors;
- Radiation Effects on MOSFET devices;
- CMOS Radiation tolerant techniques;
- 10µm Global Shutter CMOS Radiation Tolerant Pixel;
- Experimental Results;
- Conclusions;
- Q&A

Rolling Shutter vs Global Shutter pixels

Rolling shutter

Challenges:

- Motion artifacts skew
- Speed limitation

Readout at higher speed

4x lower skew but:

- 4x less signal per exposure
- No synchronization -> Flash

Rolling Shutter vs Global Shutter pixels

Global Shutter

Applications:

- Snapshot and short exposure time;
- Structured light projection => depth;
- Background subtraction;

Geel Campus Faculty of Engineering Technology

CDS in image sensors

- Cancels or reduces some noise (kTC, 1/f and offset).
- Pixel reset and pixel signal are stored;
- Difference is computed the result is the elective number of generated e-;
- Extracts the background noise from the radiation sources;
- CDS can either be analogue, digital or both processes combined.

Radiation effects in MOSFETs

KU LEUVEN

GEEL

CMOS devices under radiation

• RHBD FET designs to mitigate the TID effects

Geel Campus Faculty of Engineering Technology

10µm Global shutter pixel design

b)

GEEL

VDD_{PIX} VDD_{PIX} **VDD**_{PIX} output bus Ss RST SF2 SELs **∔**C_s SF1 SEL_R I_{Load-R}O Column **VDD**_{PIX} S_R ≐ PC-SF3 SELR CR **ØI**Load-S

Voltage Domain Global Shutter Pixel: a) Schematic and b) Layout

Experimental Results

GEEL

Experimental results

KU LEUVEN

GEEL

Geel Campus Faculty of Engineering Technology

Experimental results (2)

GEEL

Geel Campus Faculty of Engineering Technology

Pixel Performance

Parameter	Pre-Rad	1 MGy + HTA	Unit
Conversion Gain (K)	5,034	4,13	μV/e-
Dark Current ¹	57,5	286,6	e-/s
Dynamic Range	49,3	43,4	dB
Temporal Dark noise	59,6	74,2	e-
FWC	17444	10981	e-

¹at room temperature – 20C

Conclusion

- The presented Voltage Domain Pixel design can withstand TID effects up to 1MGy (SiO₂).
- The noise performance is yet to be improved;
- Dark current increases but is significantly mitigated by the RHBD techniques implemented;
- Pixel timing optimisation yet to be concluded;
- Integrated electronics (RHBD ADC's and readout electronics) can improve even further the pixel performance.
- Charge Domain Pixel designs suffer from the same issues, being expected similar degradation;

References

[1] M. R. Shaneyfelt, P. E. Dodd, B. L. Draper, and R. S. Flores, "Challenges in Hardening Technologies Using Shallow-Trench Isolation," IEEE Trans. Nucl. Sci. vol. 45, no. 6, pp. 2584-2592, Dec. 1998.

[2] B. Dierickx, "Radiation hard design in CMOS image sensors," Conference: CPIX Workshop, Bonn (DE) September 2014

[3] W W. J. Snoeys, et.al., "A new NMOS layout structure for radiation," IEEE Transactions on Nuclear Science, pp. vol. 49, no. 4, pp. 1829-1833, Aug. 2002.

[4] Dewitte, Hugo et. al., "Ultra-High Total Ionizing Dose Effects on MOSFETs for Analog Applications," IEEE Transactions on Nuclear Science, pp. vol. 68, no. 5, pp. 697-706, March May 2021.

[5] M. H. White, D. R. Lampe, F. C. Blaha and I. A. Mack, "Characterization of surface channel CCD image arrays at low light levels," IEEE Journal of Solid-State Circuits, Vols. vol. 9, no. 1, no. doi: 10.1109/JSSC.1974.1050448, pp. pp. 1-12, Feb. 1974.

Thank you

GEEL