X-ray irradiation campaigns of the Monopix2 depleted monolithic active pixel sensors

Lars Schall¹, Marlon Barbero², Pierre Barrillon², Christian Bespin¹, Patrick Breugnon², Ivan Caicedo¹, Yavuz Degerli³, Jochen Dingfelder¹, Tomasz Hemperek¹, Toko Hirono¹, Fabian Hügging¹, Hans Krüger¹, Konstantinos Moustakas¹, Patrick Pangaud², Heinz Pernegger⁴, Petra Riedler⁴, Piotr Rymaszewski¹, Philippe Schwemling³, Walter Snoeys⁴, Tianyang Wang¹, Norbert Wermes¹, and Sinuo Zhang¹ ¹Universität Bonn, ²CPPM, ³IRFU, ⁴CERN

TJ-Monopix2

- 180 nm TowerSemiconductor technology
- 2 x 2 cm² chip with 33 x 33 μ m² pixel pitch
- Small collection electrode relative to pixel pitch
 - Small sensor capacitance, long drift distances
- 7-bit ToT information and 3-bit in-pixel threshold DAC
- Triggerless column-drain readout architecture

X-ray irradiation setup

- Irradiation up to 100 Mrad including 16 measurement steps in between
- DUTs cooled to 0 °C during irradiation and measurement
- Operate X-ray tube around 0.58 Mrad/h mean intensity
 - Chip placement such that dose rate is as homogenous as possible

LF-Monopix2

- 150 nm LFoundry technology
- $1 \times 2 \text{ cm}^2$ chip with 150 x 50 μ m² pixel pitch
- Large collection electrode relative to pixel pitch
 - Short drift distances, large sensor capacitance
- 6-bit ToT information and 4-bit in-pixel threshold DAC
- Triggerless column-drain readout architecture

Power consumption TJ-MonopixZ

- Measure power consumption of different low voltage power domains for default settings
- Peak between 1 10 Mrad for all power domains
 - Positive oxide charges in STI oxide decrease threshold voltage of NMOS transistors
 - Negative charge states of interface traps in silicon substrate compensate the effect for higher doses
 - Largest relative increase for digital power domain
 - Largest absolute contribution from periphery (clock distribution)
- Close to initial power consumption after 100 Mrad

Power consumption LF-Monopix2

- Measure power consumption of different low voltage power domains for default settings
- Digital power domain:
 - Characteristic peak between 1 10 Mrad
- Analog and digital power consumption:
 - Start decreasing from 5 Mrad onward
- No significant change for power of EoC logic
- Behavior in agreement with observations of predecessor LF-Monopix1

Threshold performance LF-Monopix2

Threshold and noise performance TJ-Monopix2

Threshold

230 e⁻

245 e⁻

- Measure initial threshold and noise configuration
- Impact of irradiation on initial tuning configuration most severe between 1 – 10 Mrad

TID

0 Mrad

100 Mrad

- ENC increases by almost 300 % after 100 Mrad
 - Annealing reduces ENC to 13 e⁻
- Typical operational threshold still achievable after 100 Mrad and annealing

13 e⁻

5 e⁻

- Measure initial threshold configuration
 - Initial threshold dispersion increases by around 400 % after 100 Mrad
 - Adjustment of DACs and re-tuning limits threshold broadening
 - After 100 Mrad and annealing: typical operational configuration still achievable

TID	Threshold	Thr. Disp.	ENC
0 Mrad	2055 e⁻	91 e⁻	92 e⁻
100 Mrad	1983 e⁻	108 e⁻	122 e⁻

Beam tests after irradiation TJ-Monopix2

- Tested 100 Mrad X-ray irradiated sensor in electron beam at DESY
 - Measurements conducted at 0 °C
- No significant degradation in performance
 - Still > 99.8 % hit-detection efficiency

DAC and front-end response LF-Monopix2

- DAC linearity measured via LEMO testing output
 - Linear behavior verified throughout full irradiation campaign
- Measured gain using un-biased threshold scans
 - Small feedback capacitance offers larger gain and faster timing response

Summary

Both Sensors are fully functional after irradiation to 100 Mrad total ionizing dose. Characteristic spikes in the power consumption between 1 – 10 Mrad were measured for both DMAPS. The

threshold performance of both chips after irradiation and annealing were recoverable by adjusting given chip parameters accordingly. A total increase of 117 % and 32 % in the ENC performance for

TJ-Monopix2 and LF-Monopix2, respectively, was observed. TJ-Monopix2 proved excellent hit-detection efficiencies >99.8 % after X-ray irradiation. While beam test measurements of x-ray

irradiated LF-Monopix2 are still pending, they are expected to show similar results. Furthermore, the next steps include x-ray irradiation until the end of life for both DMAPS is reached.

This project has received funding from the Deutsche Forschungsgemeinschaft DFG (grant WE 976/4-1), the German Federal Ministry of Education and Research BMBF (grant 05H15PDCA9), and the European Union's Horizon 2020 research and innovation program under grant agreements no. 675587 (Maria Sklodowska-Curie ITN STREAM), 654168 (AIDA-2020), and 101004761 (AIDAinnova). The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

Lars Schall – lars.schall@uni-bonn.de