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Motivation
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Limit in Radiation ToleranceSilicon detectors have been enabling technology for discoveries on particle physics at colliders

TEVATRON

LHC

HL-LHC

CMS

Barrel Pixel

CDF

Layer 00

State of the art of silicon sensor performance in hadron colliders:
➢Precise tracking down to ~ 10 m → 1 fC up to 2⋅1016 neq/cm2

➢Precise timing down to ~ 30 ps      → 5 fC up to 3⋅1015 neq/cm2
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Motivation

Silicon detectors have been enabling technology for discoveries on particle physics at colliders

TEVATRON

LHC

HL-LHC

State of the art of silicon sensor performance in hadron colliders:
➢Precise tracking down to ~ 10 m → 1 fC up to 2⋅1016 neq/cm2

➢Precise timing down to ~ 30 ps      → 5 fC up to 3⋅1015 neq/cm2
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FCC-hh

CompleX will enable 4D tracking with planar silicon sensors up to the fluence of 5⋅1017 neq/cm2
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Planar silicon sensors operativity up to 1∙1016 neq/cm2
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[doi: 10.1088/1748-0221/9/05/C05023]

Signals from planar silicon sensors become 
too small

➢ Non-uniformities in the electric field

➢ Impossible to fully deplete the sensors

➢ Collected charge independent from 
thickness

http://doi.org/10.1088/1748-0221/9/05/C05023
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Planar silicon sensors operativity up to 1∙1016 neq/cm2

Macroscopic effect of radiation on silicon sensor:
➢ Dark current increase is smaller than expected

➢ Charge collection efficiency is higher than predicted

➢ Slowing down of the acceptor creation rate

Leakage current saturation
I = V  from linear to logarithmic

Trapping probability saturation

1/eff =   from linear to logarithmic

Acceptor creation saturation
NA,eff = gc gc from linear to logarithmic

y = 4,23E+13ln(x) - 1,43E+15
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[G.Kramberger et al.]

[G.Kramberger et al.]
[M.Ferrero et al.]

Saturation effect of the 
radiation damage
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The Complex project

CompleX will develop a new generation of planar silicon sensors to 
operate in extreme fluence environment
➢Exploit the saturation effect of the radiation damage
➢Use this substrate (20-40 µm)
➢Use sensor internal gain increase SNR

CompleX will extend the understanding and modelling of radiation 
damage in silicon to the fluence of 5⋅1017 neq/cm2
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Low Gain Avalanche Diodes - LGADs 

p++ electrode

n++ electrode

p bulk (~ 1012 atoms/cm2)

Electric field

Depth

p+ - layer (~ 1016 atoms/cm2)

LGADs are n-in-p planar silicon sensors with internal 
moderate gain (20 – 30) controlled by the external bias
(Efield ≥ 300 kV/cm generated by gain implant)

gain implant (p+-layer) obtained by the implantation of 
acceptor in a confined volume underneath the n++ 

electrode

LGAD performance
➢ Timing ~ 30ps
➢ Tracking (TI-LGAD, RSD) ~ 10-20 µm
➢ Radiation resistance up to fluence of  ~3E15 neq/cm2

Particle

20/11/2024

LGAD sensors are planar silicon sensors main candidate to operate at extreme fluence
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LGADs - Gain Removal mechanism 

20/11/2024

Sii + Bs → Bi Removal of 

 an acceptor

Bi + Oi → BiOi Creation of 

 a donor 
  complex

The acceptor removal mechanism deactivates the
p+-doping of the gain implant with irradiation according to

p+() = p+(0)⋅e-cA

where cA is the acceptor removal coefficient
cA depends on the initial acceptor density, p+(0), and

on the defect engineering of the gain layer atoms
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LGADs - Gain Removal mechanism 
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Sii + Bs → Bi Removal of 

 an acceptor

Bi + Oi → BiOi Creation of 

 a donor 
  complex

The acceptor removal coefficient depends on the initial 
acceptor density, p+(0)

⇒ Is it possible to improve cA further?
1                                  10                                 100

The acceptor removal mechanism deactivates the
p+-doping of the gain implant with irradiation according to

p+() = p+(0)⋅e-cA

where cA is the acceptor removal coefficient
cA depends on the initial acceptor density, p+(0), and

on the defect engineering of the gain layer atoms

Not carbonated gain implant
         Carbonated gain implant (CBL/CBH)

better radiation 
resistance

Higer gain implant

cA parametrization
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LGADs for extreme fluence

20/11/2024

The irradiation at  = 1∙1016 neq/cm2 causes the completed inactivation of the gain layer

Gain layer 
inactivation

Gain layer profiles extracted from 
Capacitance-Voltage curves, on 50 
µm-thick LGAD

Gain implant profile

Measurements
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Compensated LGADs for extreme fluence
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Compensated LGAD 
(the gain layer is obtained as difference between n+ 

and a p+ implant )

Effective doping profile
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➢ B-P effective doping
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Compensated LGADs for extreme fluence
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The compensated LGAD exploits the removal mechanism of acceptors and donors to 
engineer a gain implant unchangeable with radiation damage
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Simulation of the effect of a at  = 1∙1016 
neq/cm2 on a compensated gain layer
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Compensated LGADs for extreme fluence
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➢Acceptor removal rate is very well known
➢Donor removal rate has never been studied
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Simulation of the effect of a at  = 1∙1016 
neq/cm2 on a compensated gain layer
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The proof of concept of compensated LGADs - EXFLU1
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  Wafer #  Thickness   p+ dose  n+ dose C dose

6 30 2 a 1
7 30 2 b 1
8 30 2 b 1
9 30 2 c 1

10 30 3 a 2
11 30 3 b 2
12 30 3 b 2
13 30 3 b 2 1.0
14 30 3 c 2

15 30 5 a 4

The first compensated LGADs sensors have been released by FBK in 2022, in 
a framework of the EXFLU1 batch [V. Sola, TREDI 2024, Torino]

Design and preparatory studies have been performed in collaboration with the Perugia group

Split table ( a < b < c )

µm

3 different combinations of 
p+ – n+ doping: 
➢2 – 1
➢3 – 2
➢5 – 4

https://agenda.infn.it/event/39042/contributions/221979/
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The proof of concept of compensated LGADs - EXFLU1

20/11/2024

  Wafer #  Thickness   p+ dose  n+ dose C dose

6 30 2 a 1
7 30 2 b 1
8 30 2 b 1
9 30 2 c 1

10 30 3 a 2
11 30 3 b 2
12 30 3 b 2
13 30 3 b 2 1.0
14 30 3 c 2

15 30 5 a 4

The first compensated LGADs sensors have been released by FBK in 2022, in 
a framework of the EXFLU1 batch [V. Sola, TREDI 2024, Torino]

Design and preparatory studies have been performed in collaboration with the Perugia group

Split table ( a < b < c )

µm

3 different combinations of 
p+ – n+ doping: 
➢2 – 1
➢3 – 2
➢5 – 4

The co-implantation of Carbon in the 

gain implant volume mitigate the 
acceptor removal rate

https://agenda.infn.it/event/39042/contributions/221979/
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Compensated LGAD – IV Measurements
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p+ × 2, n+ × 1      
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Alternating of p and n doped regions



M. Ferrero, PIXEL2024, Eleventh International Workshop on 
Semiconductor Pixel Detectors for Particles and Imaging

18

Compensated LGAD – IV Measurements
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Current – Voltage measurements on wafer
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Secondary Ion Mass Spectroscopy – W15 (5-4)
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➢ Boron peak is shallower than phosphorus
➢ Boron peak is lower than predicted from simulation
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Investigation of p+ (Boron) and 
n+ (Phosphorus) implants shape 
through SIMS technique
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x

y

z

TCT setup
Gain measurements

Gain measurements method

𝐆𝐚𝐢𝐧 =
𝐐𝐋𝐆𝐀𝐃

< 𝐐𝐏𝐢𝐍
 𝐍𝐨 𝐆𝐚𝐢𝐧>

Despite not optimal p+  and n+ gain implants:
→ Good gain behaviour of the compensated LGAD sensors after irradiation

→ Even in compensated LGADs, the usage of carbon mitigates the acceptor removal

T = -10°C
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Comparison of the signal shapes generated by  
particles in compensated LGAD (W12) and a 

standard LGAD (W5 ExFlu1) 

Sensor thickness: 30 µm

Characteristics of signals in compensated LGAD:
➢ Time duration ~ 2 ns
➢ Rise time < 1 ns

Signal from compensated-LGAD has the 
main characteristics of signal from 
standard LGAD
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 particles on compensated LGAD- gain and temporal 
resolution
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GainW12 (3–2)
 = 2.5E15

W12 (3–2)
 = 2.5E15

Good internal gain provide by compensated 
LGAD irradiated at 2.5E15 neq/cm2 

Good temporal performance of compensated 
LGAD irradiated at 2.5E15 neq/cm2 
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→ Proof of concept of the operational capabilities of compensated LGADs

T = -20°C

T = -20°C
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➢ CompleX is an ERC project of 5 years with the purpose to develop a new generation of planar silicon sensors 
with internal gain, for 4D-tracking, to operate in extreme fluence environment

➢ 3 of compensated-LGAD were planned in 5 years and they will be supported by a p-in-n LGAD batch with 
the purpose to study the donor removal

➢ CompleX objectives:
• Extend and develop a radiation damage model able to describe silicon behaviour, under irradiation up to 5⋅1017 

neq/cm2

• Design LGAD silicon sensors that provide a charge of ~ 5 fC per particle hit up to fluences of 5⋅1017 neq/cm2

• Define a production process to build cost-effective radiation-tolerant detectors through the p–n dopant 
compensation

➢ The proof of concept of compensated LGAD (EXFLU1 batch) has been released in 2022
• Preliminary measurements of collected charge (gain) and temporal resolution show that compensation technology 

for the building of a gain implant is promising
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Planar silicon sensors CCE up to 1∙1016 neq/cm2

[doi: 10.22323/1.373.0050]

https://doi.org/10.22323/1.373.0050
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Compensated LGAD - Simulations
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Compensated LGAD – Simulated I-V
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Current – Voltage simulation (TCAD)Gain Layer profile – process simulation

Different diffusion of p+ and n+ implant

Alternating of p and n doped regions

Design and preparatory studies have been performed in 
collaboration with the Perugia group
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IV simulation from SIMS p+ - n+ profile
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The simulated I-V using p+ and n+ implants extracted from 
SIMS reproduces the trend of the measured I-V

Simulation from 
SIMS profiles
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The advantages of this sensors
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g = 0.02/cm

g ~ ln(fluence)

Full depletion voltage at F = 1017 neq/cm2

Thanks to saturation effects, thin sensors 
can still be depleted and operated at Vbias ≤ 500 V

VFD = e|Neff|d2/2e

Saturation Reduce thickness

What does it happen to a 20 m sensor after a fluence of 5·1016 neq/cm2? 
▻ It can still be depleted

▻ Trapping is almost absent 

▻ Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.2 fC
→ This charge is lower than the minimum charge requested by the electronics (~ 1 fC)

→ Need a gain of at least ~ 5 in order to provide enough charge
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25 µm thin LGADs

Measurements of charge collection efficiency (CCE) with an infra-red laser stimulus 
show that sensors can be operated up to the highest fluences – 25 m thick LGADs

▻ The LGAD multiplication mechanism
     ceases existing at ~ 5∙1015 neq/cm2

▻ From 1016 to 1017 neq/cm2 the collected 
     signal is roughly constant

▻ For electric fields above 14 V/m, 25 µm 
     thick silicon sensors undergo fatal death
     once exposed to particle beams (SEB)

→ Necessary to increase the radiation tolerance of the gain mechanism for 5E15 neq/cm2 and above

Laser intensity ~ few MIPs
T = –10ºC

Efield ~ 14 V/m
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Single Event Burnout

Once operated at high electric field, thin sensors fatally break 
if exposed to particle beams

The effect is called Single Event Burnout (SEB) and apply both 
to LGAD and PIN sensors

Death Mechanism:
▻ Rare, large ionization event – Highly Ionising Particle
▻ Excess charge leads to highly localized conductive path
▻ Collapse of the depleted active thickness
▻ Large current flows in a narrow path – Single Event Burnout

SEB consequence:

→ Impossible to operate irradiated thin sensors above the
      critical electric field (ESEB)

→ The ESEB value is higher for thinner sensors

Localized melt and vaporization of silicon

SEM picture                   [SSP group,UniTO]

[M. Ferrero et al., indico.cern.ch/event/1334364/contributions/5672087]

http://www.solid.unito.it/
https://indico.cern.ch/event/1334364/contributions/5672087/
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LGAD state of art in term of radiation resistance

Thin sensors from the EXFLU1 batch of FBK are the 
sensors most resilient to radiation ever produced 

by the FBK foundry

The technology exploits defect engineering 
through carbon co-implantation in the gain implant 

region

→ After a fluence of 2.5∙1015 neq/cm2, all sensors 
maintain a gain of about 10 up to the SEB limit
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CV from irradiated Compensated LGAD

[] = neq/cm2

T = + 20ºC

f = 2k Hz
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IV from irradiated Compensated LGAD

[] = neq/cm2

TF=0 = + 20ºC

TIRR = - 20ºC
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TCT setup

TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Laser intensity ~ 4 MIPs 
T = -10ºC

x

y

z
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 setup

 Setup
Oscilloscope: LeCroy 9254M (2.5GHz - 40Gs/s)
HV Power supply: CAEN DT1471ET
UCSC Board + Cividec Broadband Amplifier (20dB)
Time reference: Photonis MCP-PMT – t  15 ps
 source: Sr90 – activity ~ 37 kBq
T = -25ºC
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Simulation setup



Towards compensated LGAD – Donor removal investigation
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n++ electrode

p++ electrode

n bulk (~ 1012 atoms/cm2)

n+ - layer (~ 1016 atoms/cm2)

The study of donor removal will be 
conducted on a p-in-n LGAD batch

➢ Donor removal has been studied for doping 
densities of 1012 – 1014 atoms/cm3 

➢ We will study donor removal for 
concentrations of ~ 1015 – 1017 atoms/cm3

➢ The production of the p-in-n LGAD batch is 
planned to start by the end of 2024 

Wafer layout of the p-in-n LGAD batch 
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