

Upgrade of the Belle II Vertex **Detector with depleted monolithic** active pixel sensors **Alice Gabrielli on behalf of the Belle II VTX collaboration**

Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

November 21st 2024

- luminosity frontier
- resonance at 10.58 GeV

 \Rightarrow Require an upgrade of accelerator complex to reach the target luminosity, which may include a major redesign of the Interaction Region (IR)

uperconducting

The current Vertex Detector (VXD)

- \Rightarrow 2 inner layers of Pixel Detector (PXD) \rightarrow <u>talk</u> by F. Becherer
 - DEPFET pixel thin sensors (75 μ m) & $N_2 + CO_2$ cooling $\rightarrow 0.25\% X_0$ /layer
 - Small pitch of 50-70 μ m but long integration time of 20 μ s
 - Occupancy limit 3%
 - Cannot contribute to track findings
- \Rightarrow 4 layers of Silicon Vertex Detector (SVD)
 - Double-sided strip 300 μ m thick & 2-phase CO_2 cooling $\rightarrow 0.75\% X_0$ /layer
 - Excellent time resolution of 3 ns but strip length up to 12 cm
 - Occupancy limit 6%, using hit-time for BG rejection
 - Trigger latency limited to 5 μ s by readout

 \Rightarrow Total material budget of 3.5% X_0

Excellent performance for current occupancy <1%

L~62 cm

Upgrade of the Belle II VXD

Motivations for the upgrade

- Large uncertainty on background extrapolation at target luminosity and with a possible upgrade of the IR: 3 possible background scenarios [ref. <u>CDR</u>]
- Limited safety margin and performance degradation in high background scenario.
 - PXD layer1: up to 2% occupancy (32 MHz/cm²)
 - SVD layer 3 up to 9% occupancy (9 MHz/cm²)
- At target luminosity we may reach the limits of current detector \Rightarrow need higher granularity and time resolution in all layers
- Prepare spares in case of accidents or unforeseen degradation

Upgrade requirements:

- Hit rate up to 120 MHz/cm²
- Fast time stamping 50-100ns
- Resolution $<15\mu m \rightarrow pitch of 30-40\mu m$
- Aiming power dissipation $\leq 200 \text{ mW/cm}^2$
- Operation simplicity and reduced services
- Radiation levels:

TID ~ 100 Mrad NIEL ~ 5×10^{14} neq/cm²

⇒ Depleted Monolitich Active Pixel Sensors (DMAPS)

VTX proposal

Concept = 5 straight layers with DMAPS pixel sensors

- Higher space-time granularity & lower material budget
- Reduce occupancy to improve tracking in high background
- Better tracking & vertex resolution at low momentum
- Adaptable to potential changes of Interaction Region

Technical choices

- Identical pixel sensor on all layers: Optimized BELle II pIXel (OBELIX) chip
- VTX design \rightarrow <u>talk</u> by J. Baudot: iVTX (L1 & L2): all-silicon, self-supported, air cool $\rightarrow 0.2 \% X_0$ /layer

oVTX (L3 to L5): carbon fiber frame, water cool \rightarrow 0.3 - 0.8% X_0 /layer

 \Rightarrow Total material budget reduced to 2.4% X_0

Baseline VTX layout with 5 layers

R: 1.4 - 14 cm
max length 70 cm -> 1m

led		L1	L2	L3	L4	L5	l
	Radius	14.1	22.1	39.1	89.5	140.0	
	# Ladders	6	10	17	40	31	
	# Sensors	4	4	7	16	2 x 24	per
led	Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MF
	Material budget	0.2	0.2	0.3	0.5	0.8	%

*Large uncertainty on BG extrapolation/possible changes in IR region

TJ-Monopix2 (TJMP2) as forerunner of OBELIX

Developed for ATLAS (ITK outer layers), DMAPS Tower Semiconductor 180 nm CMOS process but modified process to improve rad-hardness & faster readout

- 33x33 μ m² pitch, 25 ns integration, large matrix 512 \times 512 pixels (2 \times 2 cm²)
- 7 bit ToT information, 3 bit in-pixel threshold tuning
- Column drain readout capable to handle >> 120 MHz/cm² \rightarrow triggerless in TJMP2
- Various sensing volume thicknesses (epi- $30 \,\mu m$, CZ-bulk)
- 4 front-end flavors with differences in the amplifier and detector input coupling (AC or DC)

DMAPS in TJ 180 nm: Concept

Small sensor capacitance (Cd)

Key for low power/low noise

Radiation tolerance challenges

- Modified process
- Small pixel size

Design challenges

- Compact, low power FE
- Compact, efficient R/O

TJ-Monopix2 sensor bonded on a test board

TJMP2 characterisation in the lab

Detailed characterisation of TJ-Monopix2 (all FE) to validate key performance crucial for OBELIX design

• Threshold and noise:

⇒ stable operation down to THR~250 e^- (MIP signal in 30 μ m Si MPV~2500 e^-)

 \Rightarrow THR dispersion 17 e^- , Noise ~8 e^-

- Time Over Threshold (ToT) calibration, Fe55
- Comparison with measurement and simulations

 \Rightarrow Measurement from monitoring pixels of the analog output signal after the FE amplifier

• Test on p-irradiated sensor ongoing

 \Rightarrow THR and noise evolution with temperature, in-pixel threshold tuning power

Layout of TJMP2 sensor: divided in 4 regions with different FE

224 Colums

Normal FE

Several beam test campaigns (DESY, 3-5 GeV electrons)

• July 2022: non-irradiated sensors and high threshold $500e^{-1}$ (un-tuned chips)

 \rightarrow Efficiency ~99% and position resolution ~9 μ m

• July 2023: low threshold 250-300 e^- and irradiated sensor 5×10^{14} neq/cm² with 24 MeV protons → Confirmed good performance and high efficiency after

irradiation, increasing bias

- July 2024: repeat on p-irradiated sensor with high fluence $5 \times 10^{14} \text{ neq/cm}^2$ & TID 100 Mrad
 - → TID 100Mrad: both DC and AC cascode efficiency 99.9%

 \rightarrow NIEL 5 x 10¹⁴ neq/cm²: slightly worse efficiency than in TB 2023 (effect of higher T and higher leakage current is the explanation)

- DC cascode efficiency>99.5% but ~3% of masked pixels
- AC cascode efficiency ~98.5%

Results TB July 2023

iperPixel inpixel efficiency

FE amplifier	Coupling	Efficiency [%]
Normal	DC	99.99
Cascode	DC	99.79
Normal	AC	98.11
Cascode	AC	99.13

Results TB July 2024 After p-irradiation, with chip temperature $\geq 40 \, \mathrm{C}$ (T_{room}) , both threshold and noise increase, with a drop in efficiency.

W8R06 @ 5x10^14 neq/cm2 - HV Cascode

 \star chip temperature ~10/15°C higher than NTC temperature 8

Several beam test campaigns (DESY, 3-5 GeV electrons)

- July 2022: non-i (un-tuned chips) \rightarrow Efficiency ~99'
- July 2023: low 5×10^{14} neq/cm \rightarrow Confirmed of irradiation, increa
- July 2024: repe 5×10^{14} neq/cm \rightarrow TID 100Mrad: \rightarrow NIEL 5 \times 10¹⁴ r (effect of higher T

 \Rightarrow Another TB planned for 2025 to explore lower temperature ranges and study the performance for irradiated sensors at different NIEL fluences

- DC cascode efficiency>99.5% but ~3% of masked pixels
- AC cascode efficiency ~98.5%

 Several cooling options for iVTX now under evaluation considering OBELIX power consumption with high hit rate & performance deterioration with high Temperature after irradiation with NIEL fluence of 5×10^{14} neq/cm²

86

84

25

30

 \star chip temperature ~10/15°C higher than NTC temperature 9

35

perPixel inpixel efficiency

OBELIX specifications

Pitch	33 <i>µ</i> m		
Signal ToT	7 bits		
Time stamping	50 to 100 ns		
Fine time *	~5 ns		
stamping	for hit rate <10 MHz/cm ²		
Hit rate max for 100% eff.	120 MHz/cm ²		
Trigger handling	30 kHZ with 10 μ s delay		
Trigger *	~10 ns resolution		
output	with low granularity		
Power	200 to 300 mW/cm ²		
(with hit rate)	(1 to 120 MHz /cm ²)		
Bandwidth	1 output 320 MHz		

* optional features

Matrix inherit from TJ-Monopix2, size adjusted

 \Rightarrow Values obtained from post-layout simulations

OBELIX sensor design

- Track Trigger capability and finer time-stamping for outer layer hits (low rate)
- First full scale prototype OBELIX-1sensor ~ ready submission in spring 2025

Analog:

- Column drain architecture from TJ-Monopix2
- Monitoring ADC
- Temperature sensors

Power pads:

On-chip LDOs voltage regulators

Digital periphery:

• Two new modules adapted for Belle II trigger: \Rightarrow TRU: Pixel readout, trigger processing \Rightarrow TTT: Fast transmission in parallel

• Based on current characterisation results on TJMP2, 2 FE flavors are chosen for OBELIX on equal area

• OBELIX design with new digital periphery with trigger logic for Belle II and optional features to allow

Summary

- SuperKEKB will need an upgrade to reach the target luminosity $6 \times 10^{35} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$, including a possible major redesign of the Interaction Region (IR)
- Current VXD has excellent performance now, but limited safety margin in the high BG scenario \Rightarrow upgrade vertex detector (VTX) based on DMAPS pixels, more performant and resilient against higher background
- OBELIX sensor based on TJMP2 matrix with new digital periphery
- Lab testing and TB campaigns on TJMP2 to validate key performance crucial for OBELIX design
- First full scale prototype OBELIX-1sensor ~ ready submission in spring 2025

IGFAE, Santiago University of Bergamo IUniversity of Bonn University of Dortmund University of Göttingen

Jilin University IJCLab, Orsay KIT, Karlsruhe RAL, Oxford IPMU, Kashiwa **INFN & University of Pavia** Queen Mary University of London **INFN & University of Pisa** IFCA (CSIC-UC), Santander CPPM, Marseille

VTX collaboration

IPHC, Strasbourg University of Tokyo KEK, Tsukuba IFIC (CSIC-UV), Valencia HEPHY, Vienna

All-silicon module < 0.2% X_0 /layer

- 4 contiguous OBELIX sensors diced as a block from the wafer, thinned to 50 μ m, except in some border area ~400 μm thick, to ensure stiffness
- Post-process redistribution layer for interconnection

Prototypes:

• Thermal and electrical tests on first real-size ladder with resistive heaters and two redistribution layers

 \Rightarrow temperature on top of metal layers of 53°C for 1.5 W dissipated/sensor

Preliminary cooling simulation results

• Non uniform power: matrix $\sim 100 \text{ mW/cm}^2$, digital periphery depending on hit rate

 \Rightarrow average power ~ 300 mW/cm² @ hit-rate of 120MHz/cm²

• Air cooling alone might be marginal

 \Rightarrow several cooling options under evaluation, based on power consumption and chip temperature limits (both max temperature and temperature gradient in the matrix)

iVTX ladder demonstrator tested

	25,339 Max
_	24,737
	24,135
	23,533
_	22,931
	22,33
	21,728
	21,126
	20,524
	19,922 Min

Preliminary results cooling simulation

Air, water and contact and **2 cooling pipes**

	Max T [°C]	T range [°C]
Contact + air	49	29
Contact + water	26	6
Contact+air+water	25	5

Ladder structure (ALICE ITS2-inspired):

- Carbon Fiber support structure (Ω beam), cold-plate with pipes (2 or 1 pipe) with liquid cooling
- Sensor glued on cold plate, flex cables connecting each half ladder

Prototypes:

• Mechanical and thermal characterisation done for the longer ladder ~70 cm (outermost layer)

Mechanical design already advanced:

 \Rightarrow now also exploring a 6 layers option, with more compact ladder design

Several beam test campaigns (DESY, 3-5 GeV electrons)

 July 2022: non-irradiated sensors and high threshold 500 e⁻ (un-tuned chips)
→ Efficiency ~99%
→ Position resolution ~9 µm

• July 2023: low threshold 250-300 e^- and irradiated sensor 5×10^{14} neq/cm² with 24 MeV protons

 \rightarrow Confirmed good performance and high efficiency after irradiation, increasing bias

Results TB July 2022

Results TB July 2023

FE amplifier	Coupling	Efficiency [%]	0.06 0.05
Normal	DC	99.99	0.04
Cascode	DC	99.79	0.03
Normal	AC	98.11	0.02
Cascode	AC	99.13	

SuperPixel inpixel efficiency

- July 2024: repeat on p-irradiated sensor with high fluence 5×10^{14} neq/cm² & TID 100 Mrad \rightarrow TID 100Mrad results
 - Both DC and AC cascode: efficiency 99.99%
 - \rightarrow NIEL 5 x 10¹⁴ neq/cm² results slightly worse than in TB 2023 (effect of higher T and higher leakage current is the current explanation)
 - ► DC cascode FE: efficiency>99.5% but with ~3% of masked pixels
 - ► AC cascode FE: efficiency ~98.5%

 \rightarrow After p-irradiation, with chip temperature $\geq 40\,\mathrm{C}$ (T_{room}) , both threshold and noise increase, with a drop in efficiency

 \rightarrow Possible tuning to reduce threshold but less powerful at higher temperature

Results TB July 2024

TID - inpixel efficiency HV cascode

Efficiency vs Temp @ HV=30 V W8R06 @ 5x10^14 neq/cm2 - HV Cascode

 \star chip temperature ~10/15°C higher than NTC temperature

