Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

November 21st 2024

Upgrade of the Belle II Vertex Detector with depleted monolithic active pixel sensors Alice Gabrielli on behalf of the Belle II VTX collaboration

- luminosity frontier
- resonance at 10.58 GeV

 \Rightarrow Require an upgrade of accelerator complex to reach the target luminosity, which may include a major redesign of the Interaction Region (IR)

The current Vertex Detector (VXD)

- ⇒ 2 inner layers of **Pixel Detector (PXD)** → <u>talk</u> by F. Becherer
	- DEPFET pixel thin sensors (75 μ m) & N_2 + CO_2 cooling \rightarrow 0.25% $X_{0}/$ layer
	- Small pitch of 50-70 μ m but long integration time of 20 μ s
	- ‣ Occupancy limit 3%
	- ‣ Cannot contribute to track findings
- ⇒ 4 layers of Silicon Vertex Detector (SVD)
	- Double-sided strip 300 μ m thick & 2-phase CO_2 cooling \rightarrow 0.75% $X_{0}/$ layer
	- ‣ Excellent time resolution of 3 ns but strip length up to 12 cm
	- ‣ Occupancy limit 6%, using hit-time for BG rejection
	- Trigger latency limited to 5 μ s by readout

 \Rightarrow Total material budget of 3.5% X_0

SVD

PXD

 $L \sim 62$ c_{D}

Excellent performance for current occupancy <1%

Upgrade of the Belle II VXD

Motivations for the upgrade

- Large uncertainty on background extrapolation at target luminosity and with a possible upgrade of the IR: 3 possible background scenarios [*ref. [CDR](https://arxiv.org/abs/2406.19421)*]
- Limited safety margin and performance degradation in high background scenario.
	- PXD layer1: up to 2% occupancy (32 MHz/cm^2)
	- SVD layer 3 up to 9% occupancy (9 MHz/cm^2)
- At target luminosity we may reach the $limits$ of current detector \Rightarrow need higher granularity and time resolution in all layers
- Prepare spares in case of accidents or unforeseen degradation

TID ~ 100 Mrad $NIEL \sim 5 \times 10^{14}$ neq/cm 2

⇒ Depleted Monolitich Active Pixel Sensors (DMAPS)

Upgrade requirements:

- \blacktriangleright Hit rate up to 120 MHz/cm²
- ‣ Fast time stamping 50-100ns
- ‣ Resolution <15 pitch of 30-40 *μ*m → *μ*m
- Aiming power dissipation \leq 200mW/cm²
- ‣ Operation simplicity and reduced services
- **Radiation levels:**

VTX proposal

- Identical pixel sensor on all layers: Optimized BELle II pIXel (OBELIX) chip
- VTX design → [talk](https://indico.in2p3.fr/event/32425/contributions/142744/) by J. Baudot: iVTX (L1 & L2): all-silicon, self-supported, air cool \rightarrow 0.2 % $X_{0}/$ layer

oVTX (L3 to L5): carbon fiber frame, water cool \rightarrow 0.3 - 0.8% $X_{0}/$ layer

 \Rightarrow Total material budget reduced to 2.4% X_{0}

Technical choices

Baseline VTX layout with 5 layers

Concept = 5 straight layers with DMAPS pixel sensors

- Higher space-time granularity & lower material budget
- Reduce occupancy to improve tracking in high background
- Better tracking & vertex resolution at low momentum
- Adaptable to potential changes of Interaction Region

**Large uncertainty on BG extrapolation/possible changes in IR region*

TJ-Monopix2 (TJMP2) as forerunner of OBELIX

Developed for ATLAS (ITK outer layers), DMAPS Tower Semiconductor 180 nm CMOS process but modified process to improve rad-hardness & faster readout

- 33x33 μ m² pitch, 25 ns integration, large matrix 512 \times 512 pixels (2 \times 2 cm²)
- ‣ 7 bit ToT information, 3 bit in-pixel threshold tuning
- ‣ Column drain readout capable to handle >> 120 MHz/cm² \rightarrow triggerless in TJMP2
- ‣ Various sensing volume thicknesses (epi-30 μm, CZ-bulk)
- ‣ 4 front-end flavors with differences in the amplifier and detector input coupling (AC or DC)

DMAPS in TJ 180 nm: Concept

Small sensor capacitance (Cd)

Key for low power/low noise

Radiation tolerance challenges

- **Modified process**
- **Small pixel size**

Design challenges

- **Compact, low power FE**
- Compact, efficient R/O

TJ-Monopix2 sensor bonded on a test board

TJMP2 characterisation in the lab

Detailed characterisation of TJ-Monopix2 (all FE) to validate key performance crucial for OBELIX design

• Threshold and noise:

⇒ stable operation down to THR~250e⁻ *(MIP signal in 30 μm Si MPV~2500e⁻)*

⇒ THR dispersion 17e⁻, Noise ~8e⁻

⇒ THR and noise evolution with temperature, in-pixel threshold tuning power

- Time Over Threshold (ToT) calibration, Fe55
- Comparison with measurement and simulations

224 Colums

Normal FI

 Measurement from monitoring pixels of the ⇒ analog output signal after the FE amplifier

• Test on p-irradiated sensor ongoing

Layout of TJMP2 sensor: divided in 4 regions with different FE

TJMP2 Test Beam

• July 2022: non-irradiated sensors and high threshold 500 *e*− (un-tuned chips)

 \rightarrow Efficiency ~99% and position resolution ~9 µm

● July 2023: low threshold 250-300 e^- and irradiated sensor 5×10^{14} neq/cm 2 with 24 MeV protons \rightarrow Confirmed good performance and high efficiency after

irradiation, increasing bias

Preliminary 100 33 98 Δ 96 THR (DAC) Efficiency (%) 94 27 92 24 90 21 88 ‣ DC cascode efficiency>99.5% but ~3% of masked pixels 18 86 ‣ AC cascode efficiency ~98.5% 15 84 50 25 40 30 35 45 Temperature T_NTC (C) \star

• July 2024: repeat on p-irradiated sensor with high fluence 5×10^{14} neq/cm² & TID 100 Mrad → TID 100Mrad: both DC and AC cascode efficiency 99.9% \rightarrow NIEL 5 \times 10¹⁴ neq/cm²: slightly worse efficiency than in TB 2023 (effect of higher T and higher leakage current is the explanation)

-
-

After p-irradiation, with chip temperature $\geq 40\,\mathrm{C}$ (T_{room}), both threshold and noise increase, with a drop in efficiency. *Results TB July 2024*

W8R06 @ 5x10^14 neq/cm2 - HV Cascode

 \star chip temperature ~10/15°C higher than NTC temperature 8

Results TB July 2023

uperPixel inpixel efficiency

Several beam test campaigns (DESY, 3-5 GeV electrons)

TJMP2 Test Beam

- ‣ DC cascode efficiency>99.5% but ~3% of masked pixels
- ‣ AC cascode efficiency ~98.5%

[%]

FE
amplifier

 \star chip temperature ~10/15°C higher than NTC temperature 9

Temperature T_NTC (C) \star

ıperPixel inpixel efficiency

 $\frac{\bar{E}}{5}$ 0.06

 0.05

Several beam test campaigns (DESY, 3-5 GeV electrons)

- \bullet July 2022: non-i (un-tuned chips) → Efficiency ~99
- \rightarrow Confirmed good performance and high effect \sim 0.000 \pm 0.000 \pm 0.000 \pm irradiation, increas 5×10^{14} neq/cm
- \rightarrow NIEL 5 \times 10¹⁴ nequested by 2023 and 2023 (effect of higher Γ 5×10^{14} neq/cm \rightarrow TID 100Mrad:
- Efficiency ~99 and position of DELIV ● July 2023: low rate & performance deterioration w after irradiation

TID 100Mrad: **butary irradiated sensors at different NIEL fluences**

Coupling Efficiency

Normal DC 99.99

OBELIX specifications

Matrix inherit from TJ-Monopix2, size adjusted

* *optional features*

⇒ Values obtained from post-layout simulations

OBELIX sensor design

11

Analog:

- Column drain architecture from TJ-Monopix2
- Monitoring ADC
- Temperature sensors

• Two new modules adapted for Belle II trigger: ⇒ TRU: Pixel readout, trigger processing ⇒ TTT: Fast transmission in parallel

Power pads:

• On-chip LDOs voltage regulators

Digital periphery:

• Based on current characterisation results on TJMP2, 2 FE flavors are chosen for OBELIX on equal area

• OBELIX design with new digital periphery with trigger logic for Belle II and optional features to allow

-
- Track Trigger capability and finer time-stamping for outer layer hits (low rate)
- First full scale prototype OBELIX-1sensor ~ ready submission in spring 2025

Summary

- \bullet SuperKEKB will need an upgrade to reach the target luminosity $6 \times 10^{35} \, \rm cm^{-2} s^{-1}$, including a possible major redesign of the Interaction Region (IR)
- Current VXD has excellent performance now, but limited safety margin in the high BG scenario upgrade vertex detector (VTX) based on DMAPS pixels, more performant and resilient ⇒ against higher background
-
-
- OBELIX sensor based on TJMP2 matrix with new digital periphery • Lab testing and TB campaigns on TJMP2 to validate key performance crucial for OBELIX design • First full scale prototype OBELIX-1sensor ~ ready submission in spring 2025

VTX collaboration

IGFAE, Santiago University of Bergamo IUniversity of Bonn University of Dortmund University of Göttingen

Jilin University KIT, Karlsruhe IPMU, Kashiwa Queen Mary University of London CPPM, Marseille IJCLab, Orsay RAL, Oxford INFN & University of Pavia INFN & University of Pisa IFCA (CSIC-UC), Santander *IPHC, Strasbourg University of Tokyo KEK, Tsukuba IFIC (CSIC-UV), Valencia HEPHY, Vienna*

All-silicon module $<$ 0.2% $X_{\rm 0}$ /layer

- 4 contiguous OBELIX sensors diced as a block from the wafer, thinned to 50 μ m, except in some border area ~400 $\mu \mathrm{m}$ thick, to ensure stiffness
- Post-process redistribution layer for interconnection

 \Rightarrow temperature on top of metal layers of 53°C for 1.5 W dissipated/sensor

Prototypes:

• Non uniform power: matrix ~100 mW/cm², digital periphery depending on hit rate

 \Rightarrow average power ~ 300 mW/cm 2 @ hit-rate of 120MHz/cm 2

• Air cooling alone might be marginal

• Thermal and electrical tests on first real-size ladder with resistive heaters and two redistribution layers

⇒ several cooling options under evaluation, based on power consumption and chip temperature limits (both max temperature and temperature gradient in the matrix)

24,737 24,135 23,533 22,931 22,33 21,728 21,126 20,524

19,922 Mir

Preliminary cooling simulation results

iVTX ladder demonstrator tested

Air, water and contact and 2 cooling pipes

Ladder structure (ALICE ITS2-inspired):

- Carbon Fiber support structure (Ω beam), cold-plate with pipes (2 or 1 pipe) with liquid cooling
- Sensor glued on cold plate, flex cables connecting each half ladder

⇒ now also exploring a 6 layers option, with more compact ladder design

Prototypes:

• Mechanical and thermal characterisation done for the longer ladder ~70 cm (outermost layer)

Mechanical design already advanced:

Results TB July 2022

• July 2022: non-irradiated sensors and high threshold 500 e^- (un-tuned chips) → Efficiency ~99% \rightarrow Position resolution ~9 µm

● July 2023: low threshold 250-300 e^- and irradiated sensor 5×10^{14} $\mathrm{neq/cm^2}\;$ with 24 MeV protons

 Confirmed good performance and → high efficiency after irradiation, increasing bias

SuperPixel inpixel efficiency

Results TB July 2023

Several beam test campaigns (DESY, 3-5 GeV electrons)

TJMP2 Test Beam

- July 2024: repeat on p-irradiated sensor with high fluence 5×10^{14} neq/cm 2 & TID 100 Mrad → TID 100Mrad results
	- ‣ Both DC and AC cascode: efficiency 99.99%
	- \rightarrow NIEL 5 \times 10¹⁴ neq/cm² results slightly worse than in TB 2023 (effect of higher T and higher leakage current is the current explanation)
	- ‣ DC cascode FE: efficiency>99.5% but with ~3% of masked pixels
	- ‣ AC cascode FE: efficiency ~98.5%

 \rightarrow After p-irradiation, with chip temperature $\geq 40\,\mathrm{C}$ (T_{room}), both threshold and noise increase, with a drop in efficiency

 \rightarrow Possible tuning to reduce threshold but less powerful at higher temperature

TJMP2 Test Beam *Results TB July 2024*

 \star chip temperature ~10/15°C higher than NTC temperature

TID - inpixel efficiency HV cascode

Efficiency vs Temp @ HV=30 V W8R06 @ 5x10^14 neq/cm2 - HV Cascode