

Performance studies of the CE-65v2 MAPS

Alessandra Lorenzetti University of Zürich alessandra.lorenzetti@cern.ch

prototype structure

Study of the global and in-pixel efficiency and resolution of different variants of the CE-65v2 MAPS

ALICE ITS3

- Upgrade of the Inner Tracking System, installation in 2027-30
- Three innermost layers of ITS2 will be replaced with 0 wafer-scale, thin, bent sensors
- Ultra-light design to minimise multiple Coulomb scattering

Requirements	ALICE ITS3	FCC-ee vertex
Sensor spatial resolution	5 µm	3 µm
Material budget per layer [X ₀]	0.07%	< 0.3%
Radiation tolerance [1MeV n _{eq} /cm ²]	10 ¹³	~ 10 ¹⁴ per year

First layer radius r _{min}	19 mm	13.7 mm
Power density	40 mW/cm ²	\lesssim 50mW/cm ²
Partial hit density	8.5 MHz/cm ²	~ 250 MHz/cm ²

On behalf of the ALICE collaboration and the CE-65 team

Testbeam at CERN SPS • Mixed hadron beam

• Telescope consists of:

- 6 ALPIDE planes 🔺
- DPTS as trigger $\widehat{1}$
- 2.2 µm resolution of telescope

In-pixel track intercept x (μm)

In-pixel discussion

 Modified with gap process has higher efficiency at edges and corners, slightly worse in the centre • Better resolution in standard process comes from edge and corner regions, thanks to charge sharing

Outlook and Conclusion

 \circ Resolution < 3.5 µm resp. < 5.5 µm, efficiency greater than 99% at thresholds larger than 3 \times RMS noise

- Compatible with FCC-ee spatial resolution requirement. Further development needed to fulfil other requirements • Detailed in-pixel studies possible thanks to large matrix size. Result confirming previous findings on process variations
- CE-65 v2 characterisation almost finished
 - Radiation tolerance of CE-65 under investigation (May 2024 test beam at DESY)
 - Request for SPS test beam in 2025 to test 18 µm pitch and modified process in detail

Bibliography

- The ALICE collaboration, Technical Design report for the ALICE Inner Tracking System 3 - ITS3 ; A bent wafer-scale monolithic pixel detector, (2024).
- Full report on the FCC Feasibility Study mid-term review. Scientific Policy Committee - Three-Hundred-and-Thirty-Sixth Meeting, (2023).
- S. Bugiel et al., Charge sensing properties of monolithic CMOS pixel sensors fabricated in a 65 nm technology, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1040, 167213 (2022).