The MiniCactus sensor development line : towards HV-CMOS Monolithic sensors with 20 ps resolution

Yavuz DEGERLI, Fabrice GUILLOUX,

Jean-Pierre MEYER, Philippe SCHWEMLING\*

CEA/Irfu/DphP and CEA/Irfu/Dedip

\*also Université Paris Cité

ice GUILLOUX, ope SCHWEMLING\*

Université Paris Cité



cea irfu

Raimon CASANOVA, Yujing GAN, Sebastian Grinstein IFAE Barcelona



Eva VILELLA

**University of Liverpool** 

Tomasz HEMPEREK (U. Bonn, now at DECTRIS)



Small noise  $\rightarrow$  choice of technology, small detector capacitance High dv/dt  $\rightarrow$ High electric field (but Vd saturates around 1 V/µm) Intrinsic amplification

Amplitude variation  $\rightarrow$  Timewalk, corrected offline

Non-homogeneous energy deposition  $\rightarrow$  cannot be corrected, minimized by design

Saturated drift velocity in sensor volume  $\rightarrow$ Uniform weighting field

Parallel plate geometry, easier for big pixels  $\rightarrow$ Large electrode designs



### **MiniCACTUS V1 Sensor Chip**

≈2 5 mm 8 3 6 en les en l'arten enten enten Layout of MiniCACTUS

Block diagram of the MiniCACTUS chip (not to scale)

#### Pixel Flavors :

Pixels 3 & 7 : 1 mm x 1 mm baseline pixels
Pixels 2, 4, 6 & 8 : 0.5 mm x 1 mm pixels
Pixel 8 : 0.5 mm x 1 mm pixel with in-pixel AC coupling capacitor (20pF)
Pixels 1 : 50 μm x 50 μm test pixel
Pixels 5 : 50 μm x 150 μm test pixel

- MiniCACTUS is a small detector prototype designed in order to address the *low S/N issue* observed on previous CACTUS large size demonstrator
- FE integrated at column level, pixels mostly passive
- On-chip Slow Control, DACs, bias circuitry
- 2 discriminated digital (LVDS) and 2 analog monitoring (*slower than CSA output*) outputs for 2 columns
- 2 small pixels implemented as test structures to study charge collection (*FEs* not power optimized)
- Some detectors thinned to 100, 200,
   300µm and than post-processed for backside polarization after fabrication

#### **TYPICAL WAVEFORMS OBSERVED DURING TESTBEAM**



 $\rightarrow$  Ringing on **Digital Output** due to coupling from the digital buffers (known problem from in-lab tests, negative impact on TW corrections from digital ToT)

180 GeV/c muon data taken at CERN/SPS EHN1, H4 beamline (parasitic to RD51/DRD1)

### TIMING MEASUREMENTS COMPARISON : PMT+90Sr SOURCE/TESTBEAM

MiniCactus v1, Chip#6, pixel 8, 0.5 x 1 mm<sup>2</sup>, 200 μm



Bias Voltage (V)

→ In-lab measurements with 90Sr betas allow to predict actual performance with MIPs



Have to select MIP-like betas by cutting out low energy deposits in PMT

## MiniCACTUS\_V2 Sensor Chip

Irfu : Yavuz Degerli, Fabrice Guilloux, Jean-Pierre Meyer, Philippe Schwemling IFAE : Raimon Casanova, Yujin Gan, Sebastian Grinstein



- ~ 2 times larger than MiniCACTUS
- 0.5 mm x 1 mm (baseline), 1 mm x 1 mm and
   0.5 mm x 0.5 mm diodes
- 50 μm x 150 μm and 2 50 μm x 50 μm small test diodes
- 3 different preamps
- New multistage discriminator with programmable hysteresis
- Improved layout for better mixed-signal coupling rejection
- CEA-IRFU & IFAE-Barcelona coll.
- Submitted in May 2023, chips came back from post-processing end May 2024

# First look at MiniCactus v2



Analog



**PMT** 

Digital

Analog/Digital couplings are gone !

## MiniCACTUS\_V2 Sensor Chip

- 3 different preamps implemented in MiniCACTUS\_V2
- 2 new preamps (CSA\_new and VPA) designed by IFAE-Barcelona for better jitter and reduced ToT



VPA : new voltage preamp

# June-July 2024 first testbeam results



TD DUT-MCPPMT After Time Walk Correction CSA1 Pixel1-2 @350V Std Dev: 8 97e-11 120 Constant 125.17 ± 1.52 Neat: 8, Ne-12 + 8, Me-13 Signa 6.76+11 + 8.36+12 100 what his same of 80 8 60 -20 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Time Difference(s) 1e - 9

Data cleaning (cut the noise)

- Sigma before time walk correction: 219 ps
- Sigma matrix after time walk correction:

| Sig(DUT-MCP) | Sig(DUT-PMT) | Sig(MCP-PMT) |  |
|--------------|--------------|--------------|--|
| 67.8 ps      | 88.1 ps      | 72.3 ps      |  |

Reverse the matrix to get the sigma of the devices:





Beamline MCP, MiniCactus v2, PMT  $\rightarrow$ 

 $175 \mu$  chip, 0.5 mm x 0.5 mm pixel, 300 V

can extract time resolution of the

Testbeam setup has three

three devices

time measurement devices :





# MiniCactus v1/v2 comparison



- $\bullet$  Time resolution of v1 and v2 similar for same pixel geometry and identical thickness
- New front-ends have similar performance (before optimization) to old front-end
- $\bullet$  0.5 mm x 0.5 mm better than 0.5 mm x 1 mm pixels
- $\bullet$  Best result so far on 0.5 x 0.5 mm pixel, thickness 175  $\mu$



# How to improve further ?

- Add intrinsic gain to :
  - Improve S/N  $\rightarrow$  Improve on time resolution
  - Reduce FE power consumption
  - Reduce pixel pitch
- Ultimate long term goal is reaching 20 ps resolution



# TCAD simulation of structures with gain layer

**MiniCACTUS-GL Layout** 





#### Electric field for one diode with external rings

- DJ-LGAD concept (buried PN-junction implemented by the foundry)
- Total area = 10 mm<sup>2</sup>, 6 different chips with different diodes

#### **Optimization of Buried PN-Junction Parameters**



- Gain  $\geq$  10 seems possible

# Submission status

- Test structures (passive sensors) have been submitted in May 2024 LF15A MPW
- Six different layouts, identified as promising by TCAD
- Production implied only minimal modifications to LF15A standard process
  - Changes of implant energies for two layers
  - Addition of one Customer Reserved Layer
- HR wafers (same as MiniCactus) → postprocessing underway
- 30 u epi wafers  $\rightarrow$  hope is to get rid of postprocessing, diced chips being shipped
- Expect to have HR chips back from dicing/postprocessing by end of 2024

# **Conclusions and perspectives**

- Short term : In-lab and test-beam tests of MiniCactus v2
- Medium term : investigate test structures with integrated gain layer.
- If test structures work, integrate front-end, and submit a MiniCactus like design in LF15A (end 2025 ?)
- Publications :
  - MiniCACTUS: A 65 ps Time Resolution Depleted Monolithic CMOS Sensor (arXiv:2309.08439, NSS 2022 conference)
  - MiniCACTUS: Sub-100 ps timing with depleted MAPS, Nucl.Instrum.Meth.A 1039 (2022) 167022, VCI 2022 conference)
  - CACTUS: A depleted monolithic active timing sensor using a CMOS radiation hard technology (arXiv:2003.04102, JINST 15 (2020) 06, P06011)

# Backup

## LF15A radiation hardness

#### 0 Mrad @Room Temp 149 Mrad @Room Temp 149 Mrad @Low Temp -15°C





<sup>[</sup>I. Mandic et al. NIM A 903, 2018]

- → Radiation tests at CERN-SPS with **proton** beam on **LF-CPIX** chip (**CPPM**)
- ightarrow 14% increase of noise after irradiation with cooling

# Comparison of time resolution of unirradiated and 10<sup>14</sup> 1 MeV neq chips



| Senso            | r HV bias<br>(V) | Conditions                     | Temp.<br>(°C) | Time res.<br>(ps)       | MPV<br>(mV)     |
|------------------|------------------|--------------------------------|---------------|-------------------------|-----------------|
| Unirradiated 300 | u 400            | testbeam, MCPMT time reference | room          | 78.97 ± 1.36            | 201.9 ± 0.5     |
| Unirradiated 300 | u 400            | 90Sr, PMT time reference*      | room          | 104.5 ± 2.30            | $195.7 \pm 2.3$ |
| Unirradiated 300 | u 280            | testbeam, MCPMT time reference | room          | 89.11 ± 1.56            | $200.9 \pm 0.5$ |
| Irradiated 300 u | 280              | 90 Sr, PMT time reference      | 20            | 108.2 ± 3.2 (PMT subt.) | 108.2 ± 3.2     |
| Irradiated 300   | u 320            | 90 Sr, PMT time reference      | 20            | 132.9 ± 5.0 (PMT subt.) | 113.5 ± 0.8     |
| Irradiated 300   | u 320            | 90 Sr, PMT time reference      | -15           | 87.9 ± 4.7 (PMT subt.)  | 132.7 ± 0.6     |

Irradiation at 10<sup>14</sup> n<sub>eq</sub> worsens time resolution by 18 % w.r.t. unirradiated at 20 °C

Cooling at -15°C brings time resolution more or less back to unirradiated performance (less dark current fluctuations)

\*PMT resolution for 90 Sr betas estimated to be 71.3 ps ± 1.7 ps

### **ELECTRIC FIELDS**



Backside versus top biasing  $\rightarrow$  Need backside polarization to ensure best charge collection and signal shape uniformity!

#### \*Depleted MAPS

### **TIMING WITH HV-CMOS/DMAPS\***

- The objective of our R&D is the development of a monolithic timing sensor in a commercial HV-CMOS process for future high energy physics experiments or for LHC upgrades (timing detectors, after phase 2 upgrades)
- □ LFoundry 150 nm HV-CMOS is one of the CMOS processes studied extensively for the CMOS option of the ATLAS Inner Tracker Upgrade
- Several large size demonstrators already designed and tested for tracking applications (LF-CPIX, LF-MONOPIX1, LF-MONOPIX2) in this process with proven radiation hardness (Bonn, IRFU and CPPM coll.)

#### **HV-CMOS Sensor Pixel**



- DNW/HR p-substrate charge collection diode
- HV (≥ 300 V) applied on the substrate (from top or back)
- Large depletion depth ( $\geq$  300  $\mu$ m)
- Charge collection by <u>drift</u> (fast)
- No internal amplification
- Electronics can be integrated inside charge collection diode

### **ON-CHIP FRONT-END**



### **TESTBENCH OF MINICACTUS IN TESTBEAM**



Time reference RD-51 MCPs (resolution < 10 ps)

# Pixel position scan at 20 keV with photons (data taken at Synchrotron Soleil)



Х

Used a pencil beam (50 microns by 50 microns) to scan pixel surface

No non-uniformity found

## **CACTUS\* DEVELOPMENT**

- □ The first demonstrator called **CACTUS** for timing in LF 150 nm process designed in 2019
- The front-end in CACTUS is based on an in-pixel fast preamplifier followed by a leading edge discriminator
- Time walk corrections done off-line by ToT measurement
- Expected timing resolution from Cadence & TCAD simulations: 50-100 ps

\*CMOS ACtive Timing μSensor





The CACTUS demonstrator on PCB (chip size : 1 cm x 1 cm)