The new two-layer Belle I Pixel Detector (PXD)

Fabian Becherer on behalf of the PXD collaboration

Pixel 2024, Strasbourg

HELMHOLTZ

Insight through Accelerators.

KEK

SuperKEKB and Belle II

- Asymmetric electron-positron collider

- E_{CM} ≈ 10.6 GeV ⇒ "B factory" Run 1: 2019 2022 with L_{int} = 424 fb⁻¹ L_{peak} = 4.7 x 10³⁴ cm⁻²s⁻¹ (world record) Long shutdown in 2022/23
- Run 2: Since 2024

- FWD BWD asymmetric onion-shaped detector
 - K_L and Muon Detector Ο
 - **EM** Calorimeter Ο

KEK

Tsukuba

- Particle ID Detector \cap
- Central Drift chamber Ο
- Vertex Detector Ο

The Vertex Detector (VXD)

Two sub-detectors: PXD and SVD

Silicon Vertex Detector (SVD)

- Four layers double-sided silicon strips
- $r \le 140 \text{ mm}$

Pixel Vertex Detector (PXD)

- 2-layers
 - \circ r₁ = 14 mm and r₂ = 22 mm
- Coverage: $17^{\Box} < \theta < 150^{\Box}$
- PXD 1: 2019 2022 incomplete 2-layer
- PXD 2: 2024 20XX complete

DEPFET

The Pixel Vertex Detector (PXD)

5.4 mm

DEpleted P-channel Field Effect Transistor

Properties:

- Pixel detector based on DEPFET
 - Concept developed at Max-Planck-Institutes in Munich (MPI/HLL)
- Modules: Self-supporting "all-silicon" structure
 - Support frame ~ 500 μ m thick
 - Monolithic active area 75 μ m thick
- Low material budget (~ 0.21% average X_0)
- ASICs on module
 - Switcher:
 - Consecutive row selection for data readout
 - DCD: Drain Current Digitizer
 - Analog to digital conversion of signal
 - DHP: Data Handling Processor
 - Zero suppression, data formatting

outer sensor section (250x512 pixels)

-

68 mm - 85 mm

50 x 85 μm²

DHP DCD Switcher

inner sensor section

50 x 55 μ m²

(250x256 pixels)

PXD design

- 2 Modules = 1 Ladder
 - Glued together •
 - In total 20 ladders
- **10 Ladders = 1 Half-Shell**
- Ladders screwed on support cooling block (SCB) •
- Half-shell (HS) mounted on beam pipe

Cooling system

- \sim 9 W per module = \sim 360 W full detector •
- 2-phase CO₂: DHP + DCD (8W)
- N₂ gas: Switcher + sensor (1W) •

 \Rightarrow Complex detector system

 \Rightarrow Challenging production, installation and operation

DEPFET PXD 1 2019-22, incomplete 2-Layer fwd 2.10 Active matrix Switcher FOS: Temperature sensors DCD DHP SCB

PXD 1 Performance

Efficiency and sudden beam losses

Di-muon hit efficiency

- ~ 99 % in fiducial region
- ~ 96 % in physics region

Sudden beam losses

- Cause: Dust particles (Hypothesis since this year)
- High instantaneous radiation doses (O(10) Gy in 40 μ s)
- Can damage switchers if powered
 - Verified at MAMI electron beam
- Improve detection and PXD power shutdown
 - Power off: Switchers safe

May 2021 beam loss

PXD 1 vs PXD 2 What will PXD 2 further improve?

- Modest improvement of impact parameters (L1 has highest impact)
- Higher probability to select correct PXD hits in 1st PXD layer at higher background levels
- Fraction of MC hits found in reconstructed track hit efficiency = $\frac{N_{\text{mc_hits_in_reco_track}}}{N_{\text{hits, mc_track}}}$ -
- Fraction of MC hits in reconstructed track hits (Fraction of background in hits)

hit purity =
$$\frac{N_{\text{mc_hits_in_reco_track}}}{N_{\text{hits, reco_track}}}$$

PXD 2 commissioning at DESY

Source scan and system test

Half-shell test setup at DESY

- Power supply and DAQ
- CO₂ and N₂ cooling
- Aluminium dummy beam pipe

Accident with 1st half-shell

- Damaged during long-term operation (2 ladders with kink at glue gap)
- Studies to understand reason
 - Gliding of PXD ladders non optimal Ο
 - Elevated air temperatures at test setup Ο
 - Aluminum beam pipe (high expansion coefficient) Ο
- Optimized gliding of ladders
- Performed endurance studies
 - Ladders quite robust against bowing Ο
 - Elevated temperature plus bowing can open glue joint Ο
 - Modules stay intact and connected with kink

\Rightarrow Carefully observe temperature and bowing during **Deperation**

Half-Shell Test Setup at DESY

1st Half-Shell August 2022

PXD 2 commissioning and installation at KEK

Full system test

Commissioning at KEK

- First operation of full PXD 2
 - One L2 module showed high noise
- Optimized cooling to reduce air temperature
- Study ladder bending via cameras
 - Two Ladders showed increased bowing

Installation in Belle II

- After confirming stable operation installation was performed
 - Connect SVD
 - Insert into Belle II
 - \circ Setup all service connection
 - Perform cosmics to study bending more precise

PXD 2 cosmic data taking

Study bending of ladders

- Study ladder alignment with cosmic data
 - Test different cooling setup
- Studies confirmed stronger bending for two ladders
 - $\circ ~~\sim 1 \text{ mm sagitta}$
 - Bowing still less than tested in endurance studies
- 2 ladders = 4 modules
 - Partially turned off some of the modules
 - Slightly reduces bending of the two ladders
- Decided to keep both ladders off during operation start
 - \circ Observe bending further during operation
 - With beam operation alignment possible even for non-powered ladders

DEPFET

PXD 2 performance Operation in 2024

- Running with 35 / 40 modules
 - 4 Modules off because of bowing
 - 1 Module off because of noise
- L1 and L2 efficiency > 98 % in fiducial region
- Smooth operation with minor down times
- Operation temperature high but within limits

eft> 0.98 Ы 0.96 0.94 0.92 0.9 0.88 0.86 0.84 0.82 dip angle = 90 - θ 0.8 20 -60 DESY.

New sudden beam lose events (SBL) Two beam loses with high dose in PXD After two beam loses similar effects as for PXD 1 observed Dead gates and noisy switcher Ο ~ 2 % of pixel lost after both SBL events H1062 PXD 2 still functional with good performance Further SBLs events could damage PXD 2 severely Ο Damage of switcher increases currents \Rightarrow Increased current increases temperature To ensure safe temperature turned off 3 additional modules in L2 ★ Scaling to highlight noisy areas \Rightarrow dark areas are not dead 2:9:0 - 2:5:0 - 2-3-0 currents before currents after clear-on clear-off clear-of SW-SU clear-or FOS CENTER 2:9:1 - 2.5.1 - 2:3:1 PXD 2 FOS BW 2:9:2 - 2:5:2 - 2:3:2 -25 -20 -10.0 I [mA] -9.5 -30 -9.0 60 I [mA] -40 -20 I [mA] -25 -20 -15 I [mA] I[mA] 25 35 80 40 after, 35 modules after, 32 modules before, 35 modules HS-1p mΑ mΑ

DEPFET

Summary and outlook

Summary

- Operation of **PXD 1 was successful** and ended in 2022
- **PXD 2 installed** and commissioned in 2023
 - Intensive studies on ladder bowing and temperature
 - Large sagitta and high temperature can open glue join
- In 2024 data taking with PXD2 has been started
 - 35 / 40 modules in operation
 - 4 larger bending
 - 1 large noise
 - L1 and L2 efficiency > 98 % in fiducial region
- **Two major SBL** events happened in 2024
 - \circ Damage ~ 2 % of PXD 2 pixel
 - Increased operation temperature \Rightarrow 3 additional L2 modules turned off

Outlook

- Risk to lose PXD 2 after further SBLs is to large
 - PXD 2 especially needed for later runs with high luminosity and higher background
- Decided to turn off PXD2 for now
 - Gives accelerator group more freedom
 - To optimize beam operation
 - To solve origin of SBL events
 - Other sub-detectors robust against SBL events
- R&D ongoing for VXD successor called VTX
 - Talk by Alice Gabrielli on Thursday at 9am

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY

ESY FH - Bo fabian.

www.desy.de

Dr. Becherer Fabian FH - Belle II fabian.becherer@desy.de

DEPFET PIXEL Principle

DEpleted **P**-channel Field Effect Transistor

- MOSFET on top of fully depleted silicon bulk
- Fast charge collection (~ns) in internal gate
- Charge in int. gate modulates drain-source current
- Internal amplification $g_q = \frac{\partial I_D}{\partial q} \approx 750 \frac{pA}{e^-}$
- High signal-to-noise ratio
- Periodic clearing required

DEPFET PIXEL Operation

DEpleted **P**-channel Field Effect Transistor

• Matrix readout steered by gate and clear voltages

Charge collection

- Gate off and clear off
 - Charges drift to internal gate
 - \circ No drain current

Sampling

- Gate on and clear off
 - Readout of stable drain current

Clearing

- Gate on and clear on
 - Charges drift from internal gate to clear implant

DEPFET PIXEL Readout

Rolling shutter readout

- Four active matrix rows at once
 - \circ Low power consumption
 - Control signals shared among pixels
 - \circ 20 µm integration time (2x beam revolution)
- Modulated drain current processed via drain lines
- Different ASICs for row control and signal processing

PXD 2 optimization and tests at DESY

Gliding and endurance tests

