A lightweight algorithm to model radiation damage effects in Monte Carlo events for High-Luminosity LHC experiments

Marco Bomben & Keerthi Nakkalil

APC & UPC

Radiation damage digitizer in ATLAS

HL-LHC conditions

Increase in instantaneous and integrated luminosity from 4 to 8 with respect to the end of Run3

From 60 to 200 collisions per BC

Innermost pixel layers in ATLAS to receive $1-2\times10^{16}$ n_{eq}/cm² after 2000 fb⁻¹, x10 more fluence than end of Run2 -> severe signal loss!

Larger radiation damage effects than Run3

- Less computing resources than Run3
- A faster yet as precise as possible radiation damage digitizer is needed

Calculating signal and position with LUTs

Designed following ATLAS MC code structure (no cluster-level correction possible)
 Algorithmically very simple

Expected to be very fast

LUTs calculated using Allpix2 together with TCAD

https://allpix-squared.docs.cern.ch/

- Building blocks follow individual steps of signal formation in detector
- Algorithms for each step can be chosen independently

Inputs to Allpix²

Development of a silicon bulk radiation damage model for Sentaurus TCAD

Å. Folkestad ^{a,*,1}, K. Akiba^b, M. van Beuzekom^c, E. Buchanan^e, P. Collins^a, E. Dall'Occo^c, A. Di Canto^a, T. Evans^d, V. Franco Lima^f, J. García Pardiñas^g, H. Schindler^a, M. Vicente^b, M. Vieites Diaz^g, M. Williams^a

10.1016/j.nima.2017.08.042

Parameters of the proposed radiation damage model. The energy levels are given with respect to the valence band (E_V) or the conduction band (E_C) . The model is intended to be used in conjunction with the Van Overstraeten–De Man avalanche model.

Defect number	Туре	Energy level [eV]	$\sigma_e [{\rm cm}^{-2}]$	$\sigma_h [{ m cm}^{-2}]$	$\eta [\mathrm{cm}^{-1}]$	
1	Donor	$E_V + 0.48$	2×10^{-14}	1×10^{-14}	4	
2	Acceptor	$E_{C} = 0.525$	5×10^{-15}	1×10^{-14}	0.75	
3	Acceptor	$E_V + 0.90$	1×10^{-16}	1×10^{-16}	36	

Look-Up Tables calculation

In Allpix² deposit 1000e at different locations

Look-Up Tables calculation

In Allpix² deposit 1000e at different locations

Let charges drift and note propagated position as a function of deposited one

See in a 3x3 matrix which is the pixel with the largest signal

Look-Up Tables calculation

In Allpix² deposit 1000e at different locations

Let charges drift and note propagated position as a function of deposited one

See in a 3x3 matrix which is the pixel with the largest signal

Calculate the fraction of induced charge k, the path Δz and the θ_{LA}

Average over all (x,y) positions for fixed z

Repeat

$$\begin{cases} \Delta z(z)|_1 &= \sum_{x,y} \Delta z(x,y,z) / \sum_{x,y} \\ \theta_{LA}(z)|_1 &= \sum_{x,y} \theta_{LA}(x,y,z) / \sum_{x,y} \\ k(z)|_1 &= \sum_{x,y} k(x,y,z) / \sum_{x,y} \end{cases}$$

Validation

No data from testbeam data available, so we performed a closure test

We tested a range in η between 0 and 1.4 (like in barrel L1)

Modules were tilted in φ by 0.25 rad

We compared Full Simulation (FS) events with LUT ones

We compared cluster charge and sizes in both projections

We simulated pions with $p_T = 1$, 10 & 100 GeV/c

Selection of results - $p_T = 100 \text{ GeV/c}$

Relative difference between LUT-based and fully simulated events indicate an agreement at the level of very few % in cluster charge and projected cluster sizes

At $\eta = 1$ a larger than expected difference is observed but it is limited to a very narrow range Harmless anyway as the track density at LHC is flat in η between -2 and 2

New geometry: 150 µm thick sensor

New sensor simulated:

- 150 μ m thick n-on-p, 50x50 μ m² pitch
- $\phi = 1 \times 10^{15} \, n_{eq} / cm^2$
- 400 V

Case for L2-L4 in ITk pixels

Look-up tables

Δz ~ 50% of

distance to electrode

140

z [µm]

120

80

80

100

120

140

z[um]

100

Comparison of LUTs for the two cases

M. Bomben - 20/11/2024

z[um]

150 μ m, example form closure test - η = 1

~ 10 % larger charge with LUT method

Very good agreement in both longitudinal and transverse cluster size

Closure tests for pions of 120 GeV

- ~ 10% more charge in LUT
- Agreement within 5% for both longitudinal and transverse cluster size but for η = 1.4
- More tests are planned

Computing performance – preliminary results

Without radiation damage effects we use these equations:

 $\begin{cases} x_{prop} &= x + [\tan(\theta_{LA}(z)) \cdot \Delta z(z)] + \Delta_x^{diff} \\ y_{prop} &= y + \Delta_y^{diff} \\ z_{prop} &= z + \Delta z(z) \\ q_{ind} &= k(z) \cdot q \end{cases}$

but with:

- k = 1
- $\Delta z = w z$
- $\theta_{LA} = const.$

Computing performance – preliminary results

Without radiation damage effects we use these equations:

 $\begin{cases} x_{prop} &= x + [\tan(\theta_{LA}(z)) \cdot \Delta z(z)] + \Delta_x^{diff} \\ y_{prop} &= y + \Delta_y^{diff} \\ z_{prop} &= z + \Delta z(z) \\ q_{ind} &= k(z) \cdot q \end{cases}$

but with:

- k = 1
- $\Delta z = w z$
- $\theta_{LA} = const.$

- Same algorithmic complexity, just different numbers
- Indeed first tests indicate no difference in performance when radiation corrections are applied

Conclusions & Outlook

- HL-LHC conditions pose stringent constraints on pixel detectors but on computing resources too
- Need for an algorithm to mimic radiation damage effects that is faster than Run3 one but as precise as possible
- LUT method promises to fulfil both tasks
- It works also for strips and soon for 3D pixels too
- Next: validate on data
- Code is on gitlab, plan to integrate it in Allpix²
- It was great to work with Allpix² we got great support! Thank you!

Want to know more? **Read our article!** <u>Sensors 2024, 24(12), 3976;</u> <u>https://doi.org/10.3390/s24123976</u>

Interested in collaborating? Conctact us!

One last thing

At this point it is crucial to have testbeam data from irradiated modules to fully validate the method В

Since the LUTs are smooth functions we can fit them with a polynomial and play with parameters till we get the best agreement with data

THANK YOU FOR YOUR ATTENTION!

Transverse cluster size

Summary

η —	CS_X			CS_Y			C_Q [ke]		
	FS	LUT	€ [%]	FS	LUT	€ [%]	FS	LUT	€ [%]
0	1.099	1.041	5.3	1.1	1.032	6.2	6.957	6.741	3.1

Agreement at few % level Same for all p_T values

clusters

Investigation of discrepancy at $\eta = 1$

For $p_{T=}$ 100 GeV/c we scanned the η range with a finer granularity

	C	S_X	
η	FS	LUT	E [%]
0	1.079	1.042	3.4
0.4	1.09	1.047	3.9
0.8	1.117	1.073	3.9
1	1.243	1.424	14.5
1.2	2.042	2.018	1.2
1.4	2.068	2.053	0.72

Agreement at few % level for all η values tested **but not for \eta = 1** (only for transverse cluster size)

Further investigation – beam divergence

For $p_T = 100$ GeV/c and $\eta = 1$ we increased slightly the beam divergence in full simulation This divergence corresponds to a range of η of [0.99,1.01]

	Results		
	CS_X		
Beam Divergence (x, y) (mrad)	FS	LUT	€ [%]
0, 0	1.224	1.428	17
10,0	1.344	1.449	8
0, 10	1.547	1.551	0.2
10, 10	1.548	1.554	0.4

N.B. Charged particles produced in pp collisions are uniformly distributed in η within [-2,2]

Conclusions: this discrepancy is appearing in a very limited η range and should pose no problem in ATLAS MC simulated events

No clear correlation (but very limited statistics)

Comparison of electric field

