Design and performance of the gaseous beam monitor for the CSR external-target experiment

Hulin Wang On behalf of the CEE Beam Monitor Group

Central China Normal University

The Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging

> Strasbourg, France Nov 18-22, 2024

Outline

- Introduction
- Beam Monitor of CEE
- Topmetal-CEEv1/v2 chips
- Summary and Outlook

CEE at HIFRL-CSR

Heavy Ion Research Facility in Lanzhou Cooling-Storage-Ring system

CSR External-target Experiment

- Study the properties of nuclear matter at high baryonic density
- Fixed target, with heavy-ion (up to U) beam energy: $\sim 0.4 1.1 \text{ GeV/u}$
- Maximum event rate: 10⁴ s⁻¹
- Start operation in 2025

Beam Monitor of CEE

- Placed upstream of the fixed target in a magnetic shield
- Measure the position of each beam particle
- Offline: vertex reconstruction (combined with TPC and MWDC)
- Online: monitor the beam status
- Main design parameters:
 - Position resolution : $50 \ \mu m$
 - Time resolution: 1 µs
 - Maximum event rate: $\sim 1 \text{ MHz}$
 - Sensitive area: $30 \times 30 \text{ mm}^2$

- Two micro-TPCs in a gas vessel, with electric field orthogonal to each other
- Position measured in two readout planes; arrival time used for track matching between two mico-TPCs
- Custom-designed Topmetal-CEE chip as anode for charge sensing and readout
- Amplification with GEM

Detector system

Field cage v1 : 25 μm Kapton+5 μm Au

Field cage v2 : 2 µm Mylar+100 nm Al

Electronics

Front-end electronics

Topmetal-CEEv1 chip

Topmetal-CEEv1 chip

8

Topmetal-CEEv1 chip: basic test

9

Topmetal-CEEv1 chip: heavy-ion beam test

- Kr at \sim 320 MeV/u
- Rate: $\sim 10^4 10^6 \text{ s}^{-1}$

Center of geometry Resolution (one row): 47.80 µm

Center of gravity Resolution (one row): 41.85 µm

Topmetal-CEEv1 chip: laser test

• 266 nm pulsed laser

Amplitude [700 e⁻]

Time [25 ns]

Events normalized to unit 0.14 E_{drift} = 300 V/cm = 2.5 cm 0.12 -_{drift} = 3.3 cm drift = 4.3 cm 0.1 0.08 0.06 0.04 0.02 0^L 120 140 160 180 200 220 240 260 280 300 Drift time + Laser delay [25 ns] Drift time + Laser delay [μs] E_{drift} = 300 V/cm $V_{Drift} = 0.728 \pm 0.003 \text{ cm/}\mu\text{s}$ 0 0.5 1 1.5 2 2.5 3 3.5 4.5 4 5 Drift distance [cm] Dev. of Drift time [ns] E_{drift} = 300 V/cm 13 12 11 10 Std. Resolution: 9-13 ns 1.5 2 2.5 3 3.5 4.5

Drift distance [cm]

Topmetal-CEEv2 chip

Main issues in Topmetal-CEEv1 chip:

- 1. Disturbance of digital circuit to the analog circuit : large pixel threshold $\sim 20 \text{ ke}^{-1}$
- 2. Large noise for high gain (custom-designed 1 fb feedback capacitor) : use medium gain as default setting: shaping time $\sim 1 \ \mu s$
- 3. Large fixed-pattern noise without threshold equalization

Changes in Topmetal-CEEv2 chip:

- Careful isolation of digital and analog circuits; remove pads inside pixels; remove TAC for TOA, on-chip ADCs, and highspeed serial readout module: pixel threshold ~ 5ke⁻
- Use 5 fb capacitor in the foundry device library for high gain : shaping time ~0.5 μs
- 3. Option to disable the local DAC for tuning

Topmetal-CEEv2 chip

Heavy-ion beam test: Topmetal-CEEv1 VS Topmetal-CEEv2 :

- Pixel threshold: $\sim 20 \text{ke}^{-} \Rightarrow \sim 5 \text{ke}^{-}$
- GEM voltage: 350V => 230 V
- Maximum particle rate before GEM sparks: $\sim 10^4$ Hz=> $\sim 10^6$ Hz
- Position resolution: similar (dominated by detector calibration, electric field uniformity, space charge effect ...)

Summary and Outlook

- Gaseous beam monitor, part of the CEE experiment, is under development. It features Topmetal-CEE chips for charge sensing and readout in the gas, with GEM for amplification.
- Complete detector system, including the gas detector, front-end electronics, and readout and control electronics, have been developed.
- Preliminary results from heavy-ion beam and laser tests showed a spatial resolution better than 50 μ m and a time resolution better than 15 ns.

• Ongoing work on the radiation tolerance study of the chip, detector calibration, track reconstruction and matching with other sub-detectors of CEE.

Thank you