

## Development of monolithic pixel sensor prototypes for the first CEPC vertex detector prototype

### Ying Zhang

### On behalf of the CEPC Vertex detector study team Institute of High Energy Physics, Chinese Academy of Sciences



11<sup>th</sup> International Workshop on Semiconductor Pixel Detectors for Particles and Imaging 18 - 22 NOV

STRASBOURG

**Collège Doctoral Européen** 

### **CEPC Vertex detector requirement**

The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community in 2012.

Efficient tagging of heavy quarks (b/c) and  $\tau$  leptons

Excellent impact parameter resolution:

10

| $\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} \ (\mu m)$ |  |
|----------------------------------------------------------------------------------|--|
|                                                                                  |  |
|                                                                                  |  |
| Baseline layout of<br>CEPC VTX @ CDR                                             |  |

#### Baseline design parameters for CEPC VTX in CDR

|         | $R \ (\mathrm{mm})$ | z  (mm) | $ \cos \theta $ | $\sigma(\mu{\rm m})$ |
|---------|---------------------|---------|-----------------|----------------------|
| Layer 1 | 16                  | 62.5    | 0.97            | 2.8                  |
| Layer 2 | 18                  | 62.5    | 0.96            | 6                    |
| Layer 3 | 37                  | 125.0   | 0.96            | 4                    |
| Layer 4 | 39                  | 125.0   | 0.95            | 4                    |
| Layer 5 | 58                  | 125.0   | 0.91            | 4                    |
| Layer 6 | 60                  | 125.0   | 0.90            | 4                    |

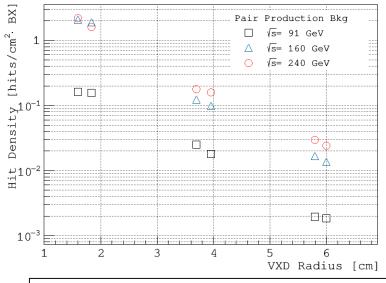
~16 µm Small pixel Thinning to 50 µm 50 mW/cm<sup>2</sup> low power ~1 µs fast readout radiation tolerance  $\leq$  3.4 Mrad/ year  $\leq 6.2 \times 10^{12} n_{ec} / (cm^2 year)$ 

Physics driven requirements Running constraints Sensor specifications  $σ_{s.p.} = \frac{2.8 \, \mu m}{Material budget} = \frac{0.15\% \, X_0 / layer}{Naterial budget}$ r of Inner most layer \_\_\_\_\_\_ beam-related background \_\_\_\_\_ -----> radiation damage----->

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector



#### Main specifications of the full-scale chip




#### Bunch spacing

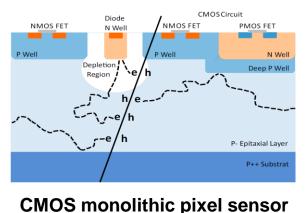
- > Higgs: 680 ns; W: 210 ns; Z: 25 ns
- > Max. bunch rate: 40 M/s

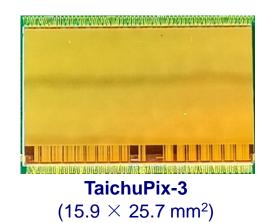
#### Hit density

- 2.5 hits/bunch/cm<sup>2</sup> for Higgs/W;
  0.2 hits/bunch/cm<sup>2</sup> for Z
- Cluster size: ~3 pixels/hit
  - > Epi-layer thickness: ~18/25 µm
  - Pixel size: 25 μm × 25 μm



Hit Density vs. VXD Radius

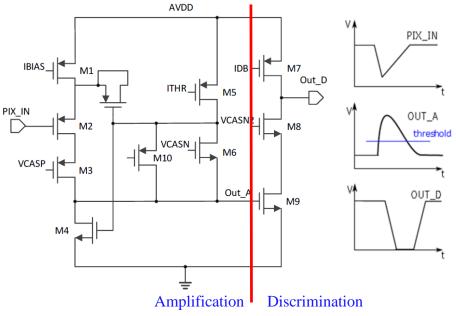

Ref: CEPC Conceptual Design Report, Volume II

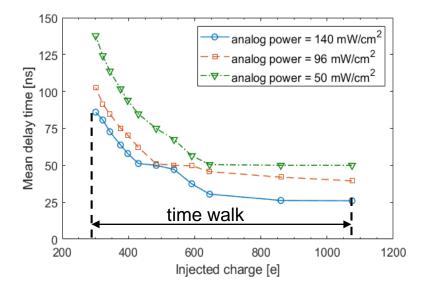

| For Vertex  | Specs   | For High rate<br>Vertex | Specs.                                           | For Ladder<br>Prototype | Specs.                                    |
|-------------|---------|-------------------------|--------------------------------------------------|-------------------------|-------------------------------------------|
| Pixel pitch | ≤ 25 µm | Hit rate                | 120 MHz/chip                                     | Pixel array             | 512 row × 1024 col                        |
| TID         | >1 MRad | Data rate               | 3.84 Gbps<br>triggerless<br>~110 Mbps<br>trigger | Power<br>Density        | < 200 mW/cm <sup>2</sup><br>(air cooling) |
|             |         | Dead time               | < 500 ns<br>for 98% efficiency                   | Chip size               | ~1.4 × 2.56 cm <sup>2</sup>               |

### **TaichuPix prototypes overview**




- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
  - > Small pixel size  $\rightarrow$  high resolution (3-5  $\mu$ m)
  - → High readout speed (dead time < 500 ns @ 40 MHz )  $\rightarrow$  for CEPC Z pole
  - Radiation tolerance (per year): 1 Mrad TID
- Completed 3 rounds of sensor prototyping in a 180 nm CMOS process
  - > Two MPW chips (5 mm × 5 mm )
    - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
  - > 1<sup>st</sup> engineering run
    - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023



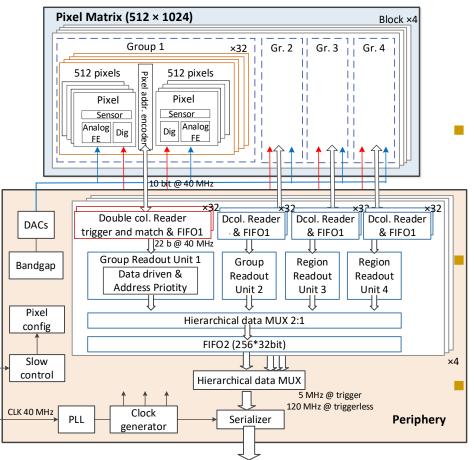






### **Pixel architecture – Analog**








Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp with a step of 25 ns.

- Digital-in-Pixel scheme: in pixel discrimination & register
- Pixel analog is derived from ALPIDE
- Biasing current has to be increased, for a time walk of ~25 ns
  - > for 40 MHz BX @ Z pole
- **Consequence:** 
  - Power dissipation increased
  - > Fast charge collection needed

### **TaichuPix sensor architecture**





#### Architecture of the full-scale TaichuPix

#### Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

#### Column-drain readout for pixel matrix

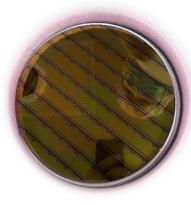
- Priority based data-driven readout
- > Time stamp added at end of column (EOC)
- > Readout time: 50 ns for each pixel

#### 2-level FIFO scheme

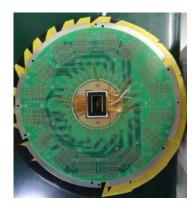
- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

### Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout


#### Features standalone operation

On-chip bias generation, LDO, slow control, etc.




### **Full size sensor TaichuPix-3**

- 12 TaichuPix-3 wafers produced from two rounds
  - > Wafers tested on probe-station  $\rightarrow$  chip selecting & yield evaluation



8-inch wafer



Probe card for wafer test

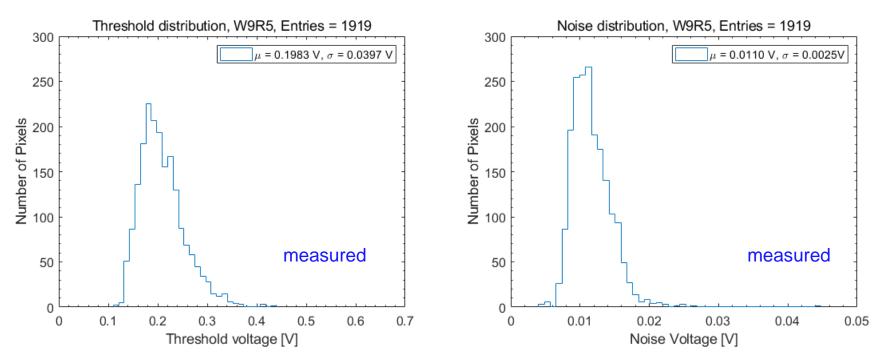


An example of wafer test result (yield ~67%)

Wafers thinned down to 150 µm and diced



Wafer after thinning and dicing



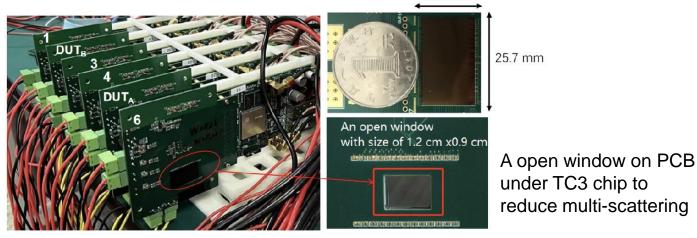

Thickness after thinning

### **Threshold and noise of TaichuPix-3**



- Pixel threshold and noise were measured with selected pixels
  - S-curve method was used to test and extract the noise and the threshold
  - Average threshold ~215 e<sup>-</sup>, threshold dispersion ~43 e<sup>-</sup>, temporal noise ~12 e<sup>-</sup> @ nominal bias setting

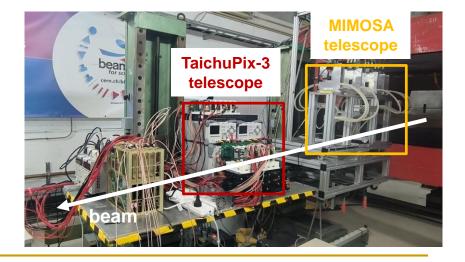



 Power dissipation of 89 ~ 164 mW/cm<sup>2</sup> tested @ 40MHz clk with different biasing conditions

### **TaichuPix-3 telescope**



#### The 6-layer of TaichuPix-3 telescope built


Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board 15.9 mm



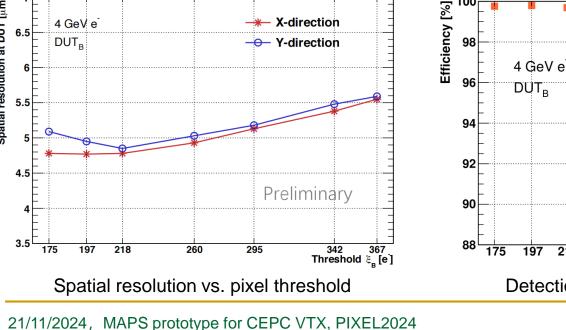
6-layer TaichuPix-3 telescope

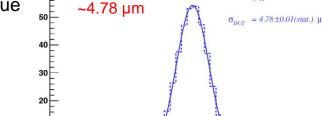
#### Setup in the DESY testbeam

- > TaichuPix-3 telescope in the middle
- > Beam energy: 4 GeV mainly used
- Tests performed for different DUT (Detector Under Test)



## to the increased cluster size


A resolution  $< 5 \mu m$  achieved, best resolution is  $\geq$ 4.78 µm

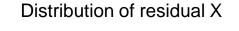

Gets better when decrease the pixel threshold, due

#### **Detector efficiency**

**Spatial resolution** 

Decreases with increasing the threshold, detection efficiency >99.5% at threshold with best resolution






-0.02

-0.01

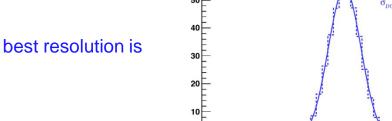
-0.03

**Spatial Resolution** 



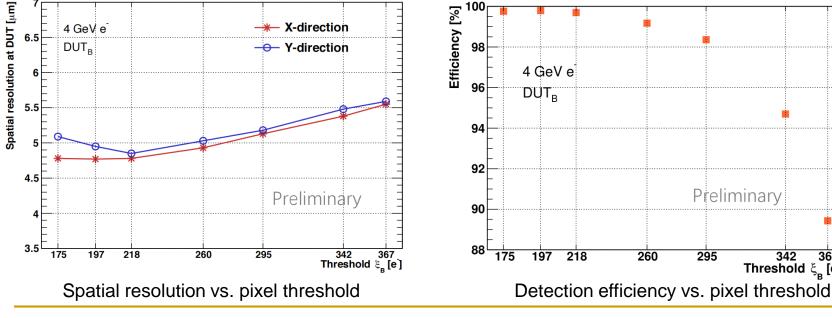
Preliminary

342 367 Threshold ξ<sub>g</sub> [e]


295

260

0


- Fit

0.01 0.02 0.03 0.04 0.05 residual(x<sub>meas</sub> - x<sub>predict</sub>) [mm]

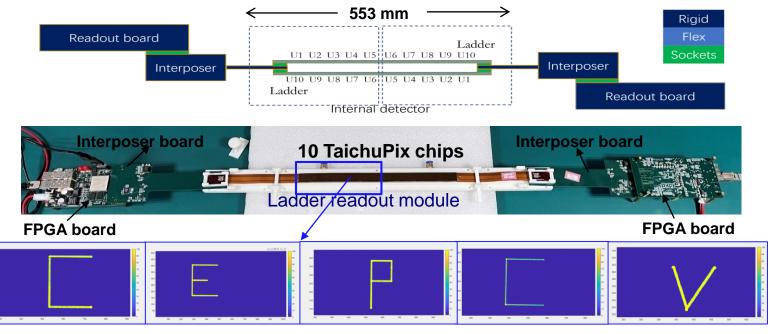


60

Events



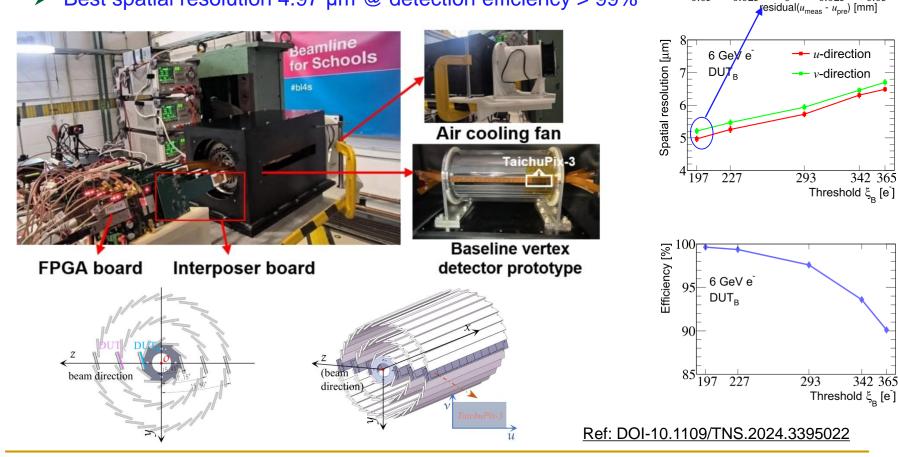
## **TaichuPix-3 beam test result**


### Ladder readout design



- Detector module (ladder) = 10 sensors + support structure + readout board
  - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
  - > Signal, clock, control, power, ground will be handled by control board through flexible PCB

#### Functionality of a full ladder fundamental readout unit was verified


- > Read out from both ends, with careful design on power placement and low noise
- Scanning a laser spot on the different chips with a step of 50 µm, clear and correct letter imaging observed → one ladder readout unit working



Laser tests on 5 Taichupix chip on a full ladder

### **Detector prototype and beam test**

- $\underset{\textbf{u}}{\overset{\textbf{o}}{\underset{\text{u}}}} \underbrace{0.15}_{\substack{\textbf{v}_{u}=4\\ \textbf{u}}} \underbrace{0.11}_{\substack{\textbf{v}_{u}=4}} \underbrace{0.11}_{\substack{u}=4} \underbrace{0.11}_{\substack{u}=4$ 6 double-sided layers assembled on detector prototype
  - 12 flex boards with two TaichuPix-3 chips bonded on each flex
  - Readout boards on one side of the detector  $\geq$
  - Best spatial resolution 4.97  $\mu$ m @ detection efficiency > 99%



21/11/2024, MAPS prototype for CEPC VTX, PIXEL2024

 $\sigma_{\rm m} = 4.97$ 

ξ<sub>B</sub> = 197 e

-0.025

0

0.08

0.04

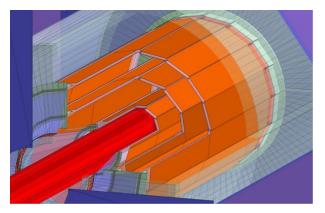
-0.05

± 0.0 (stat.) μπ

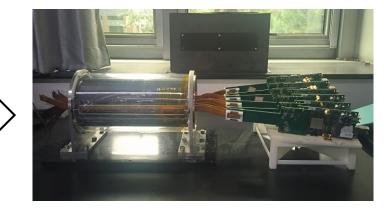
Data Gaussian fit

0.025

0.05


### Summary



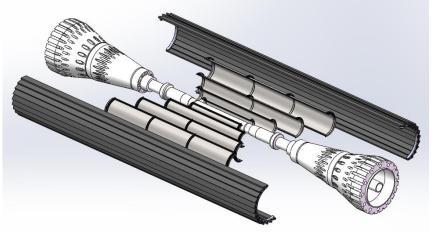

- The full-scale and high granularity pixel prototype, TaichuPix-3, has been designed and tested for CEPC VTX R&D
  - > Spatial resolution of 4.78/4.97 µm measured with 4 GeV electron beam in DESY

≻

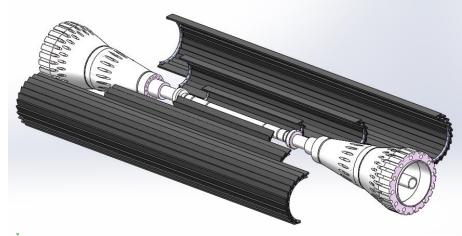
- Readout electronics for the sensor test and the ladder readout were developed
  - > Performed the sensor characterization in the lab successfully
  - Completed beam tests for the pixel sensor prototype and the vertex detector mechanical prototype



**Concept (2016)** 




1<sup>st</sup> Vertex detector prototype (2023)


### Outlook

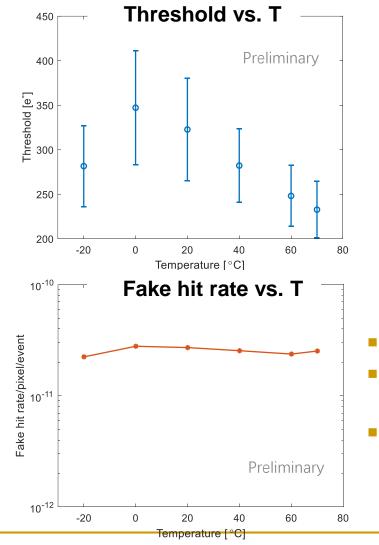


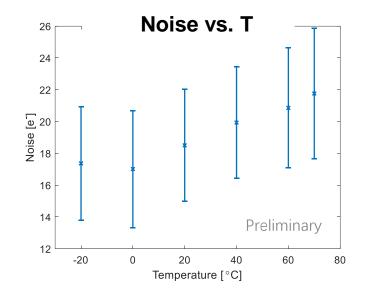
- The reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- The bent MAPS option has been chosen as baseline for the reference detector TDR. Technical challenges:
  - > Inner-most layer radius (11 mm) is smaller compared with ALICE ITS3 (18 mm)
  - > Low material budget (less than  $0.15\%X_0$  per layer)
  - > Detector Cooling with air cooling (power consumption<= 40 mW/cm<sup>2</sup>)
  - Spatial Resolution (3-5 µm)



**Baseline: Bent MAPS** 




Alternative: ladder based MAPS




# Thank you very much for your attention !

### **Performance at different temperatures**







- TC3 shows a normal functionality @ -20 ~ 60 °C
- Main performance (i.e. threshold, noise, fake hit rate) can satisfy the requirements @ -20 ~ 60 °C
- Threshold and noise fluctuate with T, probably attribute to the fluctuation of pixel biasing

21/11/2024, MAPS prototype for CEPC VTX, PIXEL2024

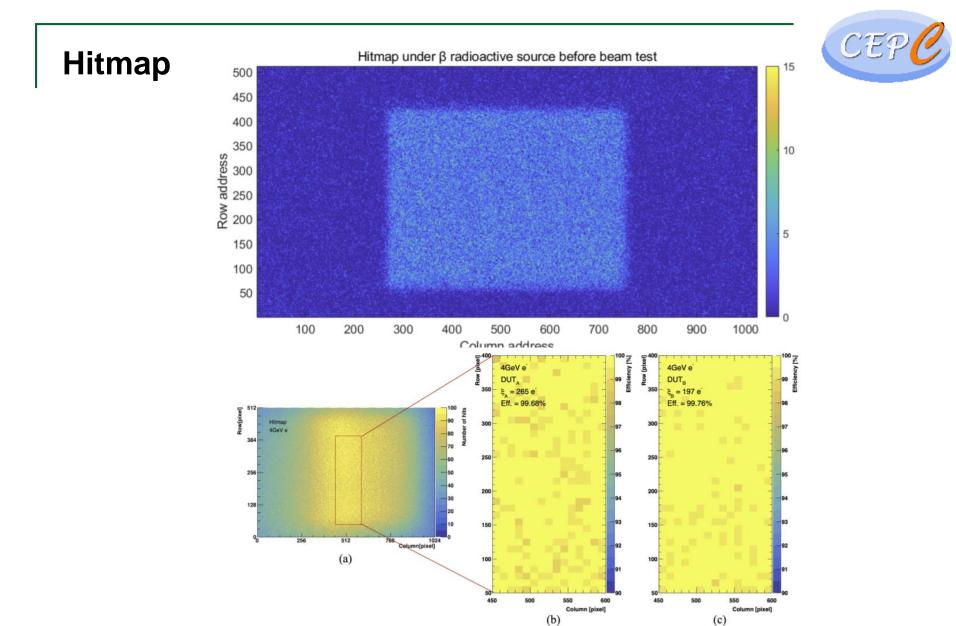



Figure 12: (a) The hitmap of one example DUT under 4 GeV electron beam. The pixels inside the red box are used to calculate the average efficiency of every  $10 \times 10$  pixels. (b) (c) The efficiency map of DUT<sub>A</sub> and DUT<sub>B</sub> at the minimum threshold.

17

#### 21/11/2024, MAPS F

### Fake hit rate



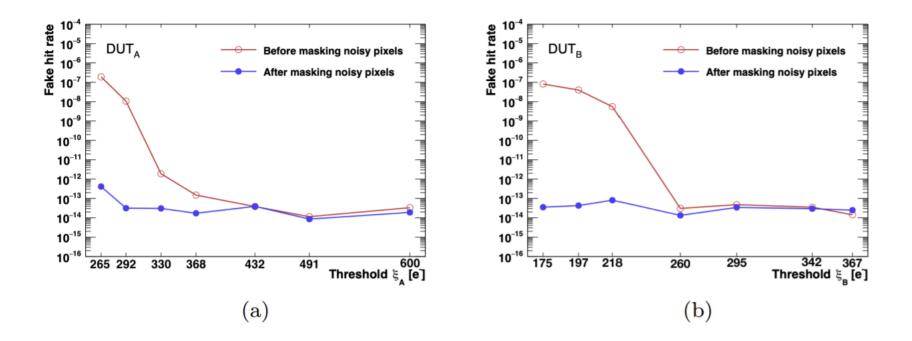



Figure 3: Fake hit rate of  $DUT_A$  (a) and  $DUT_B(b)$  as a function of threshold.

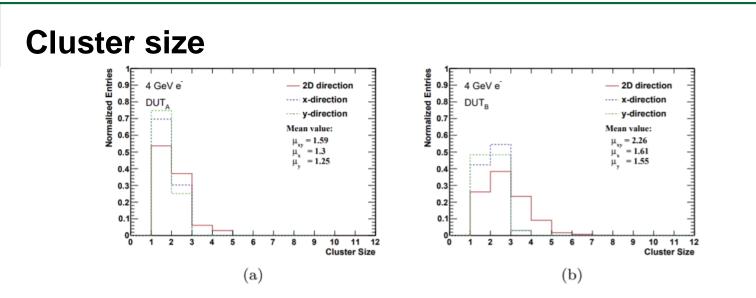



Figure 6: The cluster size distribution for  $\text{DUT}_A$  with  $\xi_A = 265e^-$  (a) and  $\text{DUT}_B$  with  $\xi_B = 175e^-$  (b), shown in the 2D detector plane direction and 1D projections along the *x*-direction (row direction of the sensor) and *y*-direction (column direction of the sensor).

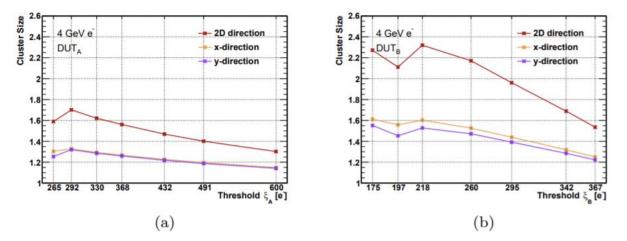



Figure 7: Average cluster size of  $DUT_A$  (a) and  $DUT_B$  (b) as a function of threshold  $\xi$ , shown in the 2D detector plane and 1D projections along *x*-direction and *y*-direction. 21/11/2024, MAPS prototype for CEPC VTX, PIXEL2024