

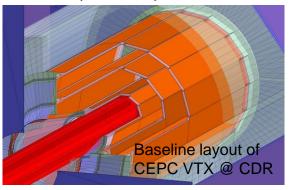
Development of monolithic pixel sensor prototypes for the first CEPC vertex detector prototype

Ying Zhang

On behalf of the CEPC Vertex detector study team Institute of High Energy Physics, Chinese Academy of Sciences

11th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging 18 - 22 NOV

STRASBOURG
Collège Doctoral Européen



The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community in 2012.

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - → Excellent impact parameter resolution:

$$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} (\mu m)$$

Baseline design parameters for CEPC VTX in CDR

	$R (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector

Sensor specifications

Small pixel $\sim 16 \, \mu m$ Thinning to $50 \, \mu m$ low power $50 \, mW/cm^2$ fast readout $\sim 1 \, \mu s$ radiation tolerance $\leq 3.4 \, Mrad/year$ $\leq 6.2 \times 10^{12} n_{eg}/(cm^2 \, year)$

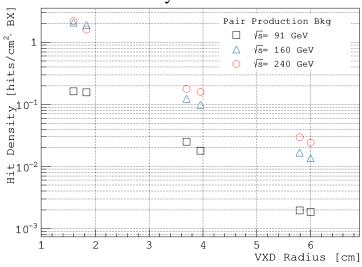
Main specifications of the full-scale chip

Bunch spacing

Higgs: 680 ns; W: 210 ns; Z: 25 ns

Max. bunch rate: 40 M/s

Hit density

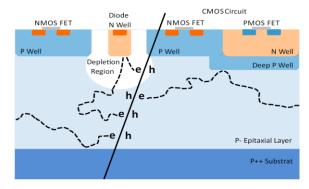

2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: ~3 pixels/hit

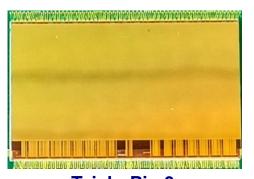
Epi-layer thickness: ~18/25 μm

Pixel size: 25 μm × 25 μm

Hit Density vs. VXD Radius

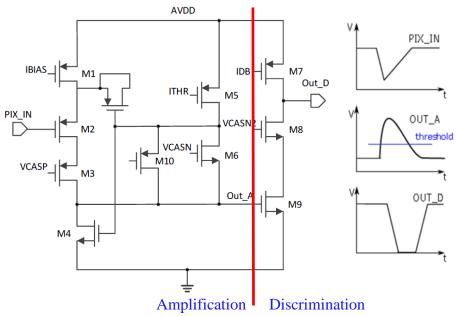

Ref: CEPC Conceptual Design Report, Volume II

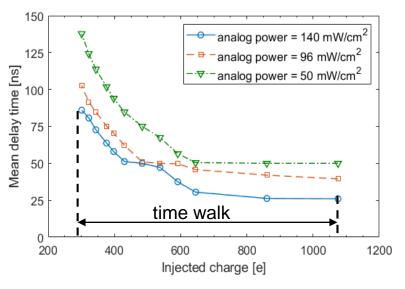
For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip (36 MHz/cm ²)	Pixel array	512 row × 1024 col
TID	>1 MRad	Data rate	3.84 Gbpstriggerless ~110 Mbpstrigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	$\sim 1.4 \times 2.56 \text{ cm}^2$


TaichuPix prototypes overview

- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
 - Small pixel size → high resolution (3-5 µm)
 - → High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole.
 </p>
 - Radiation tolerance (per year): 1 Mrad TID
- Completed 3 rounds of sensor prototyping in a 180 nm CMOS process
 - Two MPW chips (5 mm × 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
 - > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

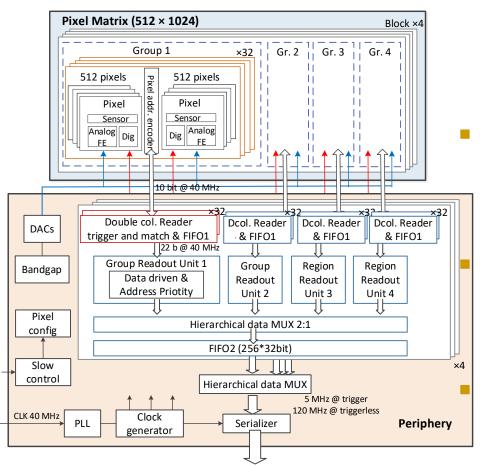
CMOS monolithic pixel sensor




TaichuPix-3 $(15.9 \times 25.7 \text{ mm}^2)$

Pixel architecture – Analog

Ref: D. Kim et al. DOI 10.1088/1748-0221/11/02/C02042



Delay time of FASTOR with respect to the pulse injection vs. injected charge. The delay time was measured by the timestamp with a step of 25 ns.

- Digital-in-Pixel scheme: in pixel discrimination & register
- Pixel analog is derived from ALPIDE
- Biasing current has to be increased, for a time walk of ~25 ns
 - for 40 MHz BX @ Z pole
- Consequence:
 - Power dissipation increased
 - Fast charge collection needed

TaichuPix sensor architecture

Architecture of the full-scale TaichuPix

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- Time stamp added at end of column (EOC)
- Readout time: 50 ns for each pixel

2-level FIFO scheme

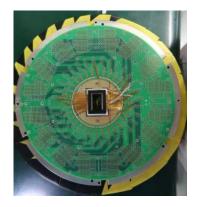
- L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

On-chip bias generation, LDO, slow control, etc.


Full size sensor TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - ▶ Wafers tested on probe-station → chip selecting & yield evaluation

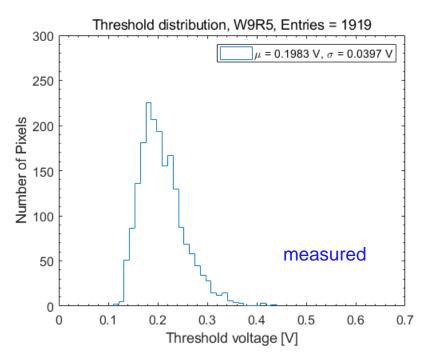
8-inch wafer

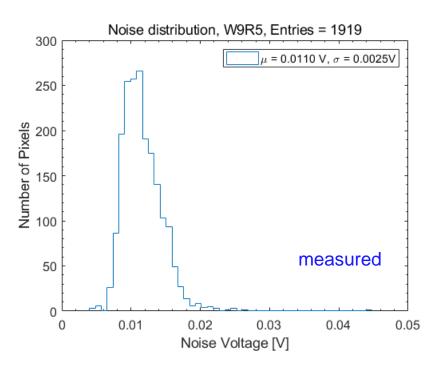
Probe card for wafer test

An example of wafer test result (yield ~67%)

Wafers thinned down to 150 µm and diced

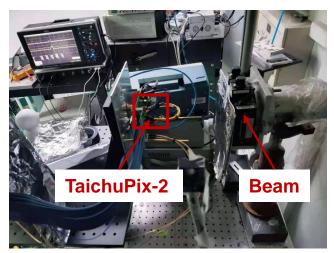
Wafer after thinning and dicing




Thickness after thinning

Threshold and noise of TaichuPix-3

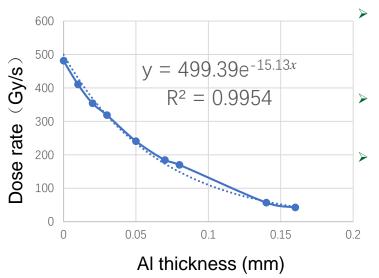
- Pixel threshold and noise were measured with selected pixels
 - S-curve method was used to test and extract the noise and the threshold
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting



 Power dissipation of 89 ~ 164 mW/cm² tested @ 40MHz clk with different biasing conditions

TID test setup

TC2 at BSRF 1W2B beamline


TC3 at BSRF 1W2B beamline

Beamline Specifications

Source	Wiggler	
Energy Range	5-18 keV	
Resolution (ΔE/E)	Over 4 x 10 ⁻⁴	
Flux (photons/sec)	10 ¹²	
Beam Size (HxV)	1mm x 0.6 mm	

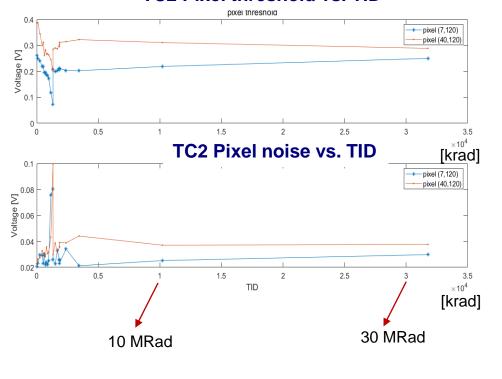
Attenuation of Aluminum (thickness of Al foil is 0.01 mm/layer)

Irradiation dose rate	
0.02rad/s	
3 rad/s	
394 rad/s	
722 rad/s	
1321.6 rad/s	
42927 rad/s	

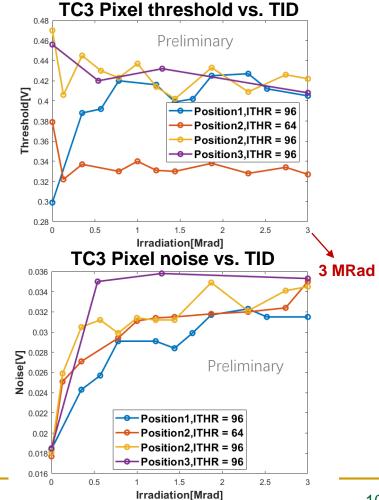
Ionization chamber is used to calibrate irradiation dose rate
The irradiation dose

is regulated by Al foil

Chip was exposed with full working condition: power, bias, clk, ...

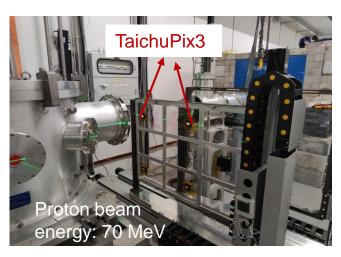

TID test result

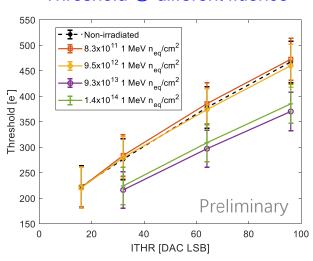
Test of TC2

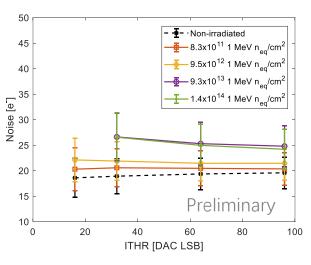

 Normal chip functionality and good noise performance proved up to 30 MRad TID

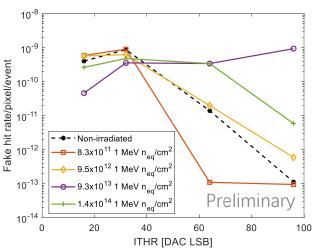
TC2 Pixel threshold vs. TID

Test of TC3


 All three irradiation regions indicated a good performance to 3 MRad TID

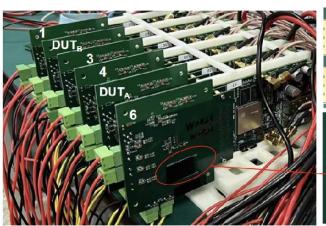

Proton irradiation test

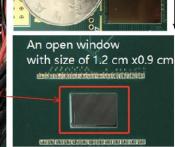

- Bare TaichuPix-3 samples irradiated at CSNS (China Spallation Neutron Source) associated proton experiment platform
 - Exposed to the fluence levels of 8E11, 9E12, 9E13, 1E14 (1 MeV n_{ea}/cm²)
- TaichuPix-3 remain fully functional after 1E14
 (1 MeV n_{eq}/cm²), efficiency test after irradiation will be performed


Threshold @ different fluence

Noise @ different fluence

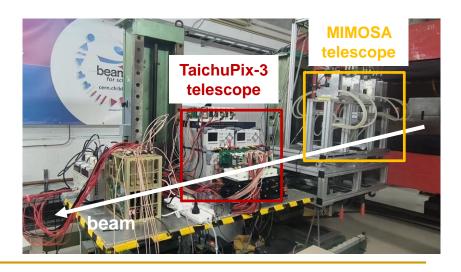
Fake Hit rate @ different fluence




TaichuPix-3 telescope

The 6-layer of TaichuPix-3 telescope built

Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board


A open window on PCB under TC3 chip to

reduce multi-scattering

6-layer TaichuPix-3 telescope

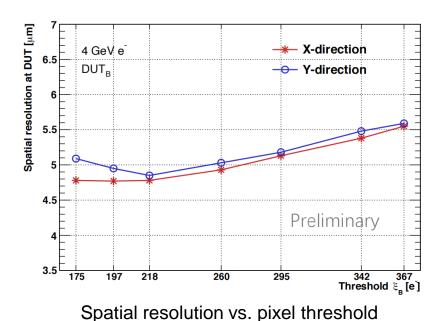
Setup in the DESY testbeam

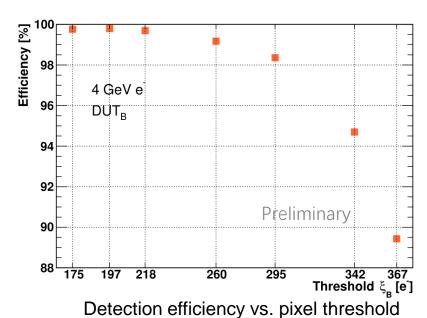
- > TaichuPix-3 telescope in the middle
- Beam energy: 4 GeV mainly used
- Tests performed for different DUT(Detector Under Test)

25.7 mm

TaichuPix-3 beam test result

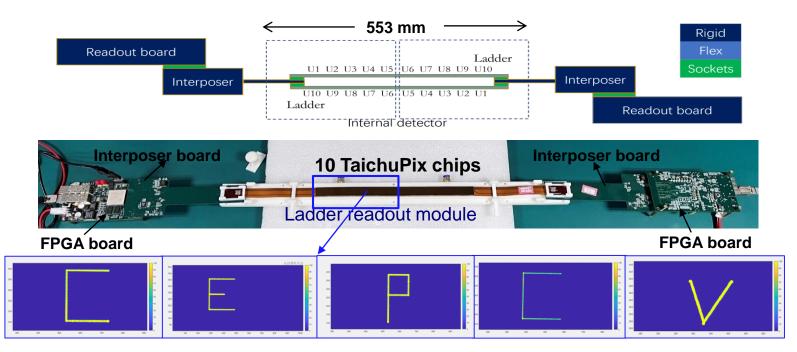
Spatial resolution


- Gets better when decrease the pixel threshold, due to the increased cluster size
- A resolution < 5 μm achieved, best resolution is
 4.78 μm


Detector efficiency

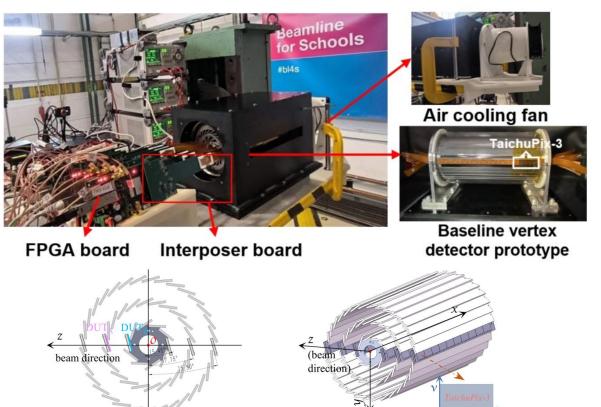
Decreases with increasing the threshold, detection efficiency >99.5% at threshold with best resolution

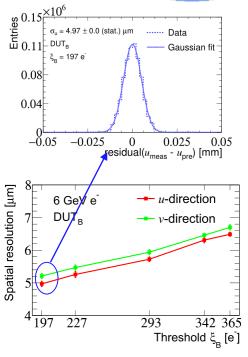
Distribution of residual X



21/11/2024, MAPS prototype for CEPC VTX, PIXEL2024

- Detector module (ladder) = 10 sensors + support structure + readout board
 - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
 - > Signal, clock, control, power, ground will be handled by control board through flexible PCB
- Functionality of a full ladder fundamental readout unit was verified
 - Read out from both ends, with careful design on power placement and low noise
 - Scanning a laser spot on the different chips with a step of 50 μm, clear and correct letter imaging observed → one ladder readout unit working

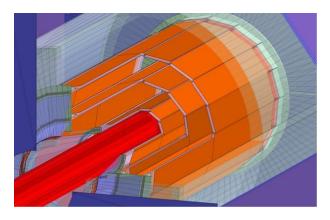



Laser tests on 5 Taichupix chip on a full ladder

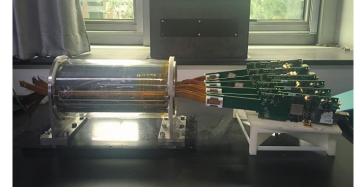

Detector prototype and beam test

CEPC

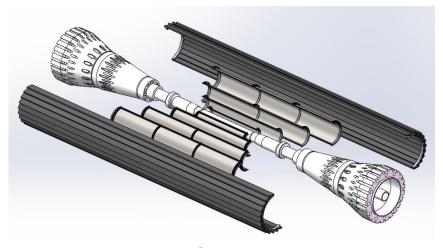
- 6 double-sided layers assembled on detector prototype
 - > 12 flex boards with two TaichuPix-3 chips bonded on each flex
 - Readout boards on one side of the detector
 - ▶ Best spatial resolution 4.97 µm @ detection efficiency > 99%



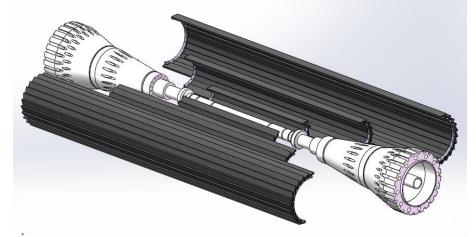
Ref: DOI-10.1109/TNS.2024.3395022


Summary

- The full-scale and high granularity pixel prototype, TaichuPix-3, has been designed and tested for CEPC VTX R&D
 - > Spatial resolution of 4.78/4.97 µm measured with 4 GeV electron beam in DESY
 - Total ionization dose (TID) > 3 Mrad
- Readout electronics for the sensor test and the ladder readout were developed
 - Performed the sensor characterization in the lab successfully
 - Completed beam tests for the pixel sensor prototype and the vertex detector mechanical prototype

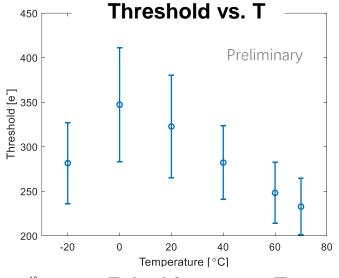

Concept (2016)

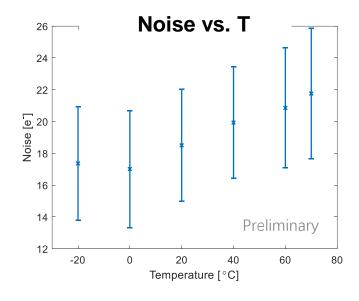
1st Vertex detector prototype (2023)


Outlook

- The reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- The bent MAPS option has been chosen as baseline for the reference detector TDR. Technical challenges:
 - Inner-most layer radius (11 mm) is smaller compared with ALICE ITS3 (18 mm)
 - Low material budget (less than 0.15%X₀ per layer)
 - Detector Cooling with air cooling (power consumption<= 40 mW/cm²)</p>
 - Spatial Resolution (3-5 μm)

Alternative: ladder based MAPS




Thank you very much for your attention!

Performance at different temperatures

Test under a consistent configuration @ different T

- TC3 shows a normal functionality @ -20 ~ 60 °C
- Main performance (i.e. threshold, noise, fake hit rate) can satisfy the requirements @ -20 ~ 60 °C
- Threshold and noise fluctuate with T, probably attribute to the fluctuation of pixel biasing

Hitmap

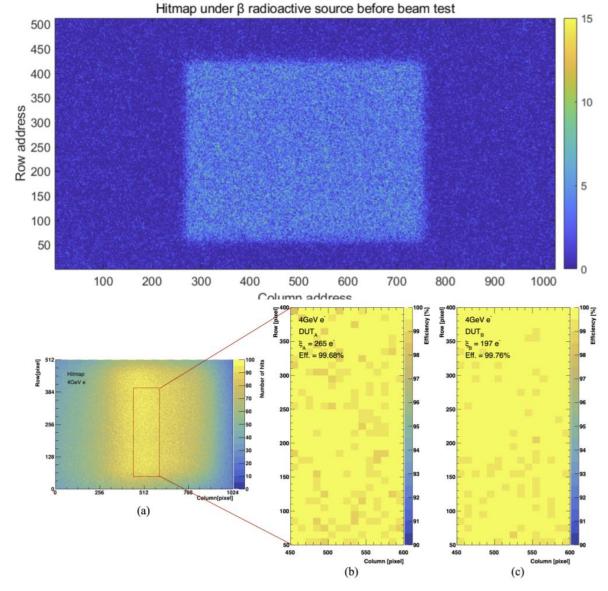


Figure 12: (a) The hitmap of one example DUT under 4 GeV electron beam. The pixels inside the red box are used to calculate the average efficiency of every 10×10 pixels. (b) (c) The efficiency map of DUT_A and DUT_B at the minimum threshold.

Fake hit rate

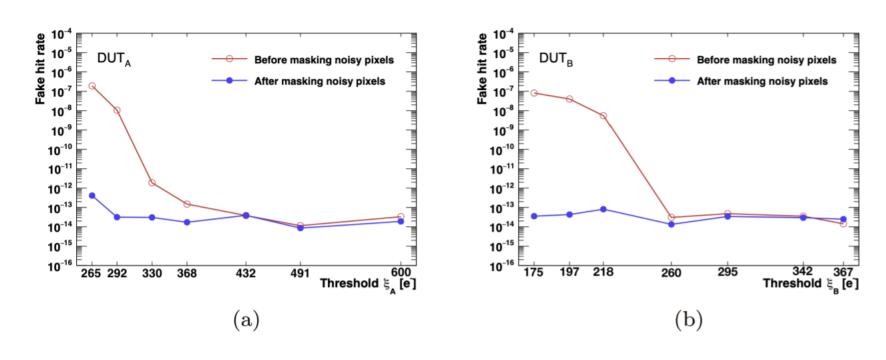
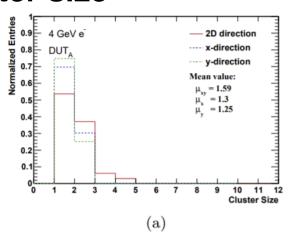



Figure 3: Fake hit rate of DUT_A (a) and DUT_B (b) as a function of threshold.

Cluster size

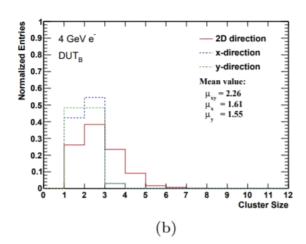


Figure 6: The cluster size distribution for DUT_A with $\xi_A = 265e^-$ (a) and DUT_B with $\xi_B = 175e^-$ (b), shown in the 2D detector plane direction and 1D projections along the x-direction (row direction of the sensor) and y-direction (column direction of the sensor).

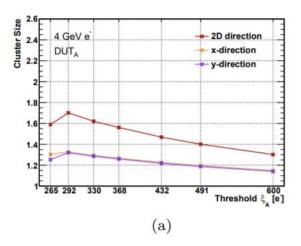
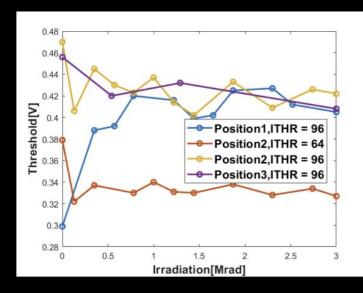
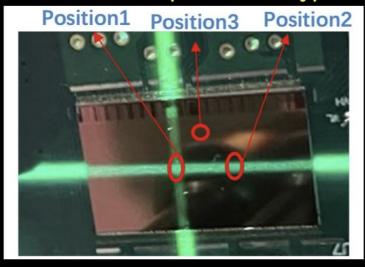


Figure 7: Average cluster size of DUT_A (a) and DUT_B (b) as a function of threshold ξ , shown in the 2D detector plane and 1D projections along x-direction and y-direction.


TID test


Radiation tests

- Taichupix3 was irradiated in-situ tested up to 3 Mrad
 - Normal chip functionality and reasonable noise performance
 - Reach the goal of the project: radiation hardness on total ionization does >1 Mrad

Taichupix3 irradiation test Pixel threshold vs. TID

TaichuPix-3 irradiated at Synchrotron radiation beamline (12 keV X-ray)

