

11th Pixel workshop Strasbourg, 18-22 November 2024

https://indico.in2p3.fr/e/pixel2024

The upgrade of the Belle II Vertex Detector: Thermomechanical characterization of prototype ladders and system integration

Jerome Baudot on behalf of VTX collaboration

- → Motivation & Constraints
- → innerVTX: short full silicon ladders
- → outerVTX: long multi-element staves

• See Alice Gabrielli's talk on Thursday morning

- Robust tracking & vertexing for any beam-background
- Adapt to possible new Interaction region
- Possibly increase performance for physics

VTX/OBELIX collaboration: 19 institutes over 8 countries

University of Bergamo University of Bonn University of Dortmund University of Göttingen Jilin University IPMU, Kashiwa Queen Mary University of London CPPM, Marseille IJCLab, Orsay RAL, Oxford

INFN & University of Pavia INFN & University of Pisa IFCA (CSIC-UC), Santander IGFAE, Santiago de Compostela IPHC, Strasbourg University of Tokyo KEK, Tsukuba IFIC (CSIC-UV), Valencia HEPHY, Vienna

- Higher space-time granularity
- Lighter material budget
- Higher radiation tolerance
- Simplified services

- iVTX: L1+L2
- oVTX: L3→L6
- Max length ~70 cm
- Radii: 1.4 to 14 cm

Framework Conceptual Design Report arXiv:2406.19421 [hep-ex]

Requirements

+ Strong interest for

- Time stamping < 5 ns
- Inputs to L1 trigger

Powering

- On-sensor LDO regulator => facilitate voltage distribution
- Dissipation: 200 to 300 mW/cm² depending on hit-rate
 - Including power drop along ladder

iVTX: inner layer design

Self-supported all silicon module

- 4 contiguous sensors diced out of wafer => 12 cm long
 - Insensitive distance from adjacent pixel matrices $\sim 500 \ \mu m$
- Interconnected with redistribution layer
 - 2 metal layers
 - Single connexion at ladder end
- Possible heterogenous thinning
 - thick edges versus thin matrix
 - Smallest material budget ~0.1 % X₀

iVTX: Inner layer prototyping

Dummy ladders

- Full silicon wafers with resistive heaters
- RDL processed at IZM-Berlin
- Uniform thickness 700 µm

=> Initial tests: Temp ~53°C for 1.5 W dissipated/sensor

• Mechanical, electrical test on-going ...

iVTX: options for cooling

Full air cooling

- Simulations (1 ladder):
 - Tmax ~50°C, ΔT(1 sensor)~10 °C
- Wind tunnel on dummy beam-pipe & 2 full-layers
 - Early tests with 70 W load & air speed 10 m/s
 T ~50°C
- Bringing air to the iVTX volume
 Solutions under study

Cooling alternatives

- Water tube in contact with sensor periphery
 - Tube Ø1.2mm, flow 0.2 μl/min
 => Tmax ~29°C, ΔT(1 sensor)~5 °C
- Additional flat heat sink for smaller ΔT
- Material budget cost: 0.2 to 0.3 X_0
 - => Physics performance simulation on-going

J. Baudot - Thermomechanics & integration of Belle II vertex detector upgrade -

oVTX: outer layer design

Recipe for long and light staves

(Inherited from ALICE-ITS2)

- Carbon fiber support frame
- Cold-plate with 1 coolant tube
- Long-flex for power & data
 - Longest flex: 1x12 sensors => 1-side output
 - Longest stave: 2x12 sensors => 2-side outputs

Cooling studies

Early prototype tested with 200 mW/cm²
 => Tmax < 30°C, ΔT(1 sensor)~4 °C

Flex development

- 4 to 6 aluminium layers
- Investigating CERN workshop & Japanese Co.

Specific power : 200 W/cmg

Flow: 0,22 Kg/min

oVTX: outer layer design

New Omega shape support

- Carbon fiber skin with rohacell core
 - way more compact / truss structure
 - Allow 3 to 4 layers at ~large radii
 => excellent for track-seeding & K_S⁰

Bending over 70 cm?

- Simulations: sagitta < 100 μm
- Measurement with prototype on-going

Truss structure + cold plate

Conclusion

Upgrade Belle II vertex detector

- Challenging requirements:
 - high hit rate / low material budget / low inner radius / 5-6 layers over small radial range
- Geometrical constraints: 5 to 6 layers within ~13 cm radius range
- Operational conditions: Room temperature & Radiation tolerance

Status of R&D

- Early prototypes for iVTX & oVTX => measurements of key quantities
- Optimising solutions for: cooling iVTX, supporting oVTX
- Global integration concept starting...

Thank you for your attention...

Belle II @ SuperKEKB

Luminosity driven program to search for physics beyond Standard Model with cc, bb, $\tau\tau$ pairs

- SuperKEKB: e+e- collider at $\sqrt{s} = M_{Y(4S)}$
 - High-lumi reach: nano-beams + high-current
 - Challenging beam-background conditions worsening with *L* but predictions suffer very large uncertainty
- Run I 2019-2022
 - World record \mathcal{L} = 4.7 x10³⁴ cm⁻² s⁻¹
 - 428 fb⁻¹ integrated with full SVD + 80% PXD
- Run II 2024-
 - LS1: accelerator improvements, 100% PXD+SVD
 - Push toward 2 x10³⁵ cm⁻² s⁻¹
- Further planning
 - Target 6 x10³⁵ cm⁻² s⁻¹
 - Requires interaction region improvements

Current vertex detector: VXD

<u>2 inner layers: PXD</u>

See F. Becherer's talk on Monday morning

- DEPFET sensors
- Pitch 50-75 μm , Integration time 20 μs
 - Not triggered
- full silicon layer (sensor 75 µm thick)
 material budget: 0.25 % X₀ / layer
- Occupancy limit 3%
- <u>4 outer layers: SVD</u>
 - DSSD sensors
 - Time resolution 3 ns, Strip length 6 cm
 - Origami-concept, CO2 cooling
 - material budget: 0.75 % X_0 / layer
 - \bullet Triggered read-out, latency limited to 5 μs
 - Occupancy limit 6%

See L. Corona's talk at ICHEP 2024

Established layout

		L1	L2	L3	L4	L5
Radius	mm	14.1	22.1	39.1 or 69.0	89.5	140.0
# ladders		6	10	17 or 30	40	31
# sensors/ladder		4	4	7 or 12	16	2x24
Material budget	% X ₀	~0.2	~0.2	0.3 or 0.4	0.5	0.8

Investigated layout

		L1	L2	(L3)	L4	L5	L6
Average radius	mm	14.1	22.1	39.1 or 69.0	85.8	109.3	136.8
# ladders		6	10	17 or 30	36	48	60
# sensors/ladder		4	4	7 or 12	16	20	24
Material budget	% X ₀	~0.2	~0.2	~0.5	~0.5	~0.5	~0.5

Expected VTX performance

Thermal test of long oVTX stave

Interaction region for higher lumi

Current machine

- World luminosity record 4.7x10³⁴ cm⁻².s⁻¹ (2022)
- Expected max lumi ~2x10³⁵ cm⁻².s⁻¹
 - Main limit from dynamic aperture at Interaction Region (IR)

Potential road toward 6x10³⁵ cm⁻².s⁻¹

- New final focusing magnet (QCS) required
 - To increase dynamic aperture at IR
 - On-going R&D for feasibility
- Foreseen new QCS conflicts with current VXD volume
 => new VTX length & support

VTX sensor requirements & strategy

	Belle-II depleted MAPS	TJ-Monopix2		
Sensitive area	~30x17 mm ²	17x17 mm ²		
Sensitive thickness	~30 µm	25-100 µm		
Pitch	30 to 40 µm	33 µm		
Signal digits	1 to few bits	7 bits ToT		
Integration time	50 to 100 ns	25 ns		
Hit rate (average)	120 MHz/cm ²	> 100 MHz/cm ²		
Triggered read-out	30 kHz, lat. 10 µs			
Power	~200 mW/cm ²	200 mW/cm ²		
TID fluence	~1 MGy ~5.10 ¹⁴ n _{eq} /cm ²	1 MGy 3.10 ¹⁵ n _{eq} /cm ²		
Oper. Temp.	room+	-20 °C		

Large proto ~4 cm² chosen as pixel matrix

- TJ 180 nm CIS process
- Bonn, CERN, CPPM, CEA-IRFU DOI: 10.1016/j.nima.2020.164403
- Modified process for depletion
 => radiation tolerance
- Column-drain read-out inherited from ATLAS FE-I3

Steps toward Optimised BELIe II pIXel sensor (OBELIX)

- Characterisation of TJ-Monopix2 pixel matrices
- Start design of 1st complete sensor OBELIX-1
 - Extension of TJ-Monopix-2 pixel matrix
 - Completed with new digital logic + LDO regulator

- Characterisation of OBELIX-1
- From OBELIX v1 to v2
 - corrections & option choice driven by tests
 - Addition of SEU protection

<==== now

DAQ system concept

Belle II detector Upgrade

J. Baudot - Thermomechanics & integration of Belle II vertex detector upgrade - Pixel workshop 18-22 November 2024