Design and optimisation of radiation resistant AC- and DC-coupled resistive LGADs

A. Fondacci, T. Croci, D. Passeri, R. Arcidiacono, N. Cartiglia, M. Boscardin, M. Centis Vignali, G. Paternoster, O. Hammad Ali, L. Lanteri, L. Menzio, F. Siviero, M. Ferrero, V. Sola, A. Morozzi, F. Moscatelli

CINFIN CION

 $=$

COLLEGE

Spatial resolution \sim 5 µm

Temporal resolution $\sim 10 ps$

Very low material budget

Very low power consumption

A. Fondacci et al., PIXEL 2024 - November 19, 2024

alessandro.fondacci@pg.infn.it

Temporal resolution $\sim 10 ps$

Very low material budget

Very low power consumption

A. Fondacci et al., PIXEL 2024 - November 19, 2024

alessandro.fondacci@pg.infn.it

Very low material budget

Very low power consumption

A. Fondacci et al., PIXEL 2024 - November 19, 2024

alessandro.fondacci@pg.infn.it

A. Fondacci et al., PIXEL 2024 - November 19, 2024

An intriguing candidate for future colliders

FBK RSD2 performance summary

RSD LGAD: AC or DC coupled electrodes?

Simulation approach (SPICE & TCAD)

Playing with pad shape

Thickness = $20 \mu m$; Pitch = $20 \mu m$; Pad radius = $2 \mu m$.

Silicon oxide trenches

Watch out for contact resistance

MIP

16.99

1.37

Radiation damage modelling @ PG

Radiation Damage Model New University of Perugia

deep-level radiation-induced traps

Acceptor Removal Acceptor Creation

Transformation of electrically active acceptor atoms into neutral defect complexes. ormation of electr
into neutral defec
be parameterised

It can be parameterised as

 $N_{A\,GL}(\Phi) = N_{A\,GL}(0) \cdot e^{-c_A \cdot \phi}$

If $\phi \leq 3 \cdot 10^{15} n_{eq}/cm^2$

$$
N_{A,Bulk}(\Phi) = N_{A,Bulk}(0) + g_c \cdot \Phi
$$

else

$\overline{N_{A}}_{Bulk}(\Phi) = 4.17 \cdot 10^{13} \cdot \ln \Phi - 1.41 \cdot 10^{15}$ l

After irradiation performances

As the fluence increases, the total collected charge decreases due to charge trapping.

However, the total collected charge is always divided in the same way by the resistive plane.

Conclusions

- DC-RSDs are promising candidates for future colliders (e.g. FCC);
- Their first production was guided by comprehensive 3D TCAD simulations:
	- The pads should be small to avoid introducing significant distortion into the impact point reconstruction;
	- Pad-to-pad trenching effectively confines the signal when utilising small circular pads.
- The wafers left the clean room a fortnight ago, and the first experimental measurements were carried out.

The Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging PIXEL24 – Strasburg (Fr)

Heavy Ion Model

EXECT A **MIP** can be modelled through the Heavy Ion Model, whose generation rate is given by the following expression:

$$
G(l, w, t) = \begin{cases} G_{LET}(l)R(w, l)T(t) & \text{if } l < l_{max} \\ 0 & \text{if } l \geq l_{max} \end{cases}
$$

- \blacksquare \blacksquare \blacksquare \blacksquare is a function describing the temporal variation of the generation rate;
	- *In particular, it's a Gaussian function whose mean value represents the moment of the heavy ion penetration.*
- \blacksquare $R(w, l)$ is a function describing the spatial variation of the generation rate;
	- *It too is a Gaussian and represents its standard deviation.*
- \bullet $G_{LET}(l)$ represents the linear energy transfer generation density, expressed in e/h pairs per cm3 by default .

How many e/h pairs are generated by the MIP for each µm crossed?

- \overline{Energy} Loss $\overline{[eV/\mu m]}$
	- $3.68 eV$
-

Energy Loss $[keV/\mu m] = 0.027 \ln(depth) + 0.126$ S. Meroli et al., *Energy loss measurement for charged particles in very* **in 2014** *thin silicon layers,* Journal of Instrumentation, vol. 06, P06013, Jun. 2011

Charge imbalance algorithm

X-coordinate

- $Q_{x_{-3}} = Q_1 + Q_7 + Q_{13} + Q_{19} + Q_{25} + Q_{31}$
- $Q_{x_{-2}} = Q_2 + Q_8 + Q_{14} + Q_{20} + Q_{26} + Q_{32}$ \mathbf{H} .
- $Q_{x_{-1}} = Q_3 + Q_9 + Q_{15} + Q_{21} + Q_{27} + Q_{33}$
- $Q_{x_1} = Q_4 + Q_{10} + Q_{16} + Q_{22} + Q_{28} + Q_{34}$
- $Q_{x_2} = Q_5 + Q_{11} + Q_{17} + Q_{23} + Q_{29} + Q_{35}$
- $Q_{x_3} = Q_6 + Q_{12} + Q_{18} + Q_{24} + Q_{30} + Q_{36}$

Z-coordinate

- $Q_{Z_{-3}} = Q_{31} + Q_{32} + Q_{33} + Q_{34} + Q_{35} + Q_{36}$
- $Q_{Z_{-2}} = Q_{25} + Q_{26} + Q_{27} + Q_{28} + Q_{29} + Q_{30}$
- $Q_{z_{-1}} = Q_{19} + Q_{20} + Q_{21} + Q_{22} + Q_{23} + Q_{24}$
- $Q_{z_1} = Q_{13} + Q_{14} + Q_{15} + Q_{16} + Q_{17} + Q_{18}$
- $Q_{z_2} = Q_7 + Q_8 + Q_9 + Q_{10} + Q_{11} + Q_{12}$
- $Q_{z_3} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6$

$$
X_R = \frac{\sum_{i=-3}^{3} Q_{x_i} \cdot x_i}{\sum_{i=1}^{36} Q_i}
$$

$$
Z_R = \frac{\sum_{i=-3}^{3} Q_{z_i} \cdot z_i}{\sum_{i=1}^{36} Q_i}
$$

Crosses of various sizes

36 electrodes *36 electrodes*

Resistive strips

Silicon oxide trenches

17.3 101.9 0.5 2.9 600.0

TotalCurrentDensity (A*cm^-2) 17.3 101.9 0.5 2.9 600.0

Different pad arrangements

Different pad arrangements

- Percentages by event type:
- 1-electrode: **30%**

Matrices of squares

Matrices of squares

- 2-electrode: 40%
- 3-electrode: 14%
- 4-electrode: **16%**

- 1-electrode: **38%**
- 2-electrode: 25%
- 3-electrode: **37%**

Different pad arrangements

Matrices of hexagons Matrices of hexagons

250