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Is there a way to 
fulfil the four 
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An intriguing candidate for future colliders
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FBK RSD2 performance summary
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~	50𝑘 pixels/cm2

Layout

Device made and bonded
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RSD LGAD: AC or DC coupled electrodes?
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~	50𝑘 pixels/cm2
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AC-RSD LGAD

1. Long-tail bipolar signals

2. Baseline fluctuation

3. Uncontrolled signal spreading

4. Not easily scalable to large-area 
sensors
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Simulation approach (SPICE & TCAD)
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~	50𝑘 pixels/cm2 SPICE: Quick estimation of the 
optimal sheet resistance (2 kΩ/sq)

Full 3D TCAD: Evaluation of various geometrical layouts (pad and 
pixel shapes and dimensions) and technological options (resistive 

strips and silicon oxide trenches) on signal-sharing properties.

2 kΩ/sq
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Playing with pad shape
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MIPMIP

Thickness = 20 µm;
Pitch = 20 µm;
Cross length = 16 µm ;
Cross width = 1 µm.

MIP

MIP

Thickness = 20 µm;
Pitch = 20 µm;
Pad radius = 2 µm.

MIP
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1.77
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Silicon oxide trenches
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Watch out for contact resistance
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Radiation damage 
modelling @ PG
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After irradiation performances
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8.0×1014 1 MeV neq/cm2 1.5×1015 1 MeV neq/cm2
As the fluence 

increases, the total 
collected charge 
decreases due to 
charge trapping.

However, the total 
collected charge is 

always divided in the 
same way by the 
resistive plane.

24.82

0.08
0.08

0.02

24.70

0.14
0.14

0.02
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DC resistive read-out silicon sensors for future 4D tracking
Roberta Arcidiacono on behalf of the  4DSHARE Project

Università del Piemonte Orientale and INFN Torino – Italy,  Roberta.Arcidiacono@cern.ch
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Goal: development of high-resolution 4D-tracking detectors capable of simultaneously measuring the position 
and time of passage of charged particles within a single sensitive device.

→ Innovative sensor: thin LGAD with a resistive DC-coupled read-out (aka DC-RSD)

6” wafer DC-RSD1 FBK

Moderate internal gain 
→ large signals with short rise time 

and low noise, ideal for timing  

Resistive layer
→ intrinsic charge sharing, ideal for 

high spatial resolution

DC-cooupled electrodes
→ leakage current removed at every electrode, 

baseline fuctuation over large devices removed

The DC-RSD1 production includes test structures, pixel matrices and strips 
with different pitch, different electrodes layout, with or without charge 
containment (using isolating trenches)

Testing plans for frst 4DSHARE production: 
●  systematic study of signal propagation and signal sharing/containement as a function of sensor type 
(in the lab)

●  position and time resolution measurements with laser signals (TCT-setup)
●  in parallel, preliminary performance studies with 5-GeV electron beam in DESY of 3 sensor types 
(December 2024)

Most performing electrodes 
shape/patterns, identifed with 
extensive TCAD simulations 

From DC-RSD1 reticle: series of trenched pixel matrices with a 
squared or exagonal electrode pattern. Pitch: 500, 300, 200 μm  

    A               B              C    
Three types of “trench 

crossing” under the  electrode  
implemented

Current density over device surface, generated by a hit in the center of the sensor (3D-TCAD 
simulation), representing the expected signal confnement  in a DC-RSD with cross-shaped 
metal electrodes (left), and with dot-like electrodes connected with inter-pad resistor 
(middle) or isolating trenches (right).
More on A. Fondacci's talk “Design and optimisation of radiation resistant AC- and DC-coupled resistive 
LGADs” (Pixel2024) 

IV characteristics 
for 5 shots on 

wafer W3 

Comparison between 
the three types of 
“trench crossing” for:

● pixel matrix 3x3 
squared 500 μm

● exagonal matrix, 15 
pixels, 500 μm

A1, A16 = type A 
A2, A17 = type B 
A3, A18 = type C

“Type B” devices show a slight early BD, 
either due to the design or to the testing 
method (single needle measurement).

inter-pad resistors or isolating trenches added to create a “cage” where the signal 
is confned → achieving signal containment within a pre-determined number of 

electrodes → better and uniform performance over the pixel surface

Gain on wafers (median), at 200 V, using 
PIN and LGAD single pads. Gain 
computed comparing IV characteristics at 
dark and with LED light (λ= 950 nm) 

Temp: 24 ºC

Gain mean value and spread is as expected in most of the 
wafers, for the two gain doses.
From IVs: leakage current in range of operation in reverse 
bias condition is low  (5 wafers substrate have very high 
leakage current →  discarded!) 
Average breakdown: 280-300 V (high gain) and 330-350 V (low gain)

DC-RSD1: proof-of-concept production
●  completed in November!
●  15 wafers with different: n++ resistivity, gain layer dose, 
metal-Si contact type

●  several types of devices tested on-wafer@FBK
●  preliminary measurements of leakage current, gain, 
breakdown voltage so far

●  good yield observed  

Conclusions

• DC-RSDs are promising candidates for future 
colliders (e.g. FCC);

• Their first production was guided by 
comprehensive 3D TCAD simulations:
• The pads should be small to avoid introducing 

significant distortion into the impact point 
reconstruction;

• Pad-to-pad trenching effectively confines the signal 
when utilising small circular pads.

• The wafers left the clean room a fortnight ago, 
and the first experimental measurements were 
carried out.
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~	50𝑘 pixels/cm2

Heavy Ion Model
§ A MIP can be modelled through the Heavy Ion Model, whose 

generation rate is given by the following expression:

𝑮 𝒍,𝒘, 𝒕 = '𝑮𝑳𝑬𝑻 𝒍 𝑹 𝒘, 𝒍 𝑻(𝒕) 𝒊𝒇	𝒍 < 𝒍𝒎𝒂𝒙
𝟎 𝒊𝒇	𝒍 ≥ 𝒍𝒎𝒂𝒙

§ 𝑻 𝒕 is a function describing the temporal variation of the 
generation rate;

• In particular, it’s a Gaussian function whose mean value 
represents the moment of the heavy ion penetration.

§ 𝑹 𝒘, 𝒍 is a function describing the spatial variation of the 
generation rate;

• It too is a Gaussian and 𝑤 𝑙 represents its standard 
deviation.

§ 𝑮𝑳𝑬𝑻(𝒍) represents the linear energy transfer generation 
density, expressed in e/h pairs per cm3 by default .

How many e/h pairs are generated by the MIP for each µm crossed?

§
!"#$%&	()** #+/-.

/.12	#+

§ 𝐸𝑛𝑒𝑟𝑔𝑦	𝐿𝑜𝑠𝑠 ⁄𝑘𝑒𝑉 µ𝑚 = 0.027 ln 𝑑𝑒𝑝𝑡ℎ + 0.126 S. Meroli et al., Energy loss measurement for charged particles in very 
thin silicon layers, Journal of Instrumentation, vol. 06, P06013, Jun. 2011



~	50𝑘 pixels/cm2

Charge imbalance algorithm

HIT 1HIT 3

HIT 2
X-coordinate
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§ !!!# = !& + !( + !") + !&* + !&+ + !$&
§ !!!$ = !$ + !% + !"' + !&" + !&# + !$$
§ !!$ = !) + !"* + !"+ + !&& + !&( + !$)
§ !!# = !' + !"" + !"# + !&$ + !&% + !$'
§ !!" = !+ + !"& + !"( + !&) + !$* + !$+

Z-coordinate
§ !%!" = !&' + !&( + !&& + !&) + !&* + !&+
§ !%!# = !(* + !(+ + !(, + !(- + !(. + !&/
§ !%!$ = !'. + !(/ + !(' + !(( + !(& + !()
§ !%$ = !'& + !') + !'* + !'+ + !', + !'-
§ !%# = !, + !- + !. + !'/ + !'' + !'(
§ !%" = !' + !( + !& + !) + !* + !+

!! =
∑ $"$ % &#$
#%&$
#'(
∑ $#$)
#%*

'! =
∑ $+$ % (#$
#%&$
#'(
∑ $#$)
#%*

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

X

Z

!! !" !#!$!!$"!$#

"!

""

"#

"$!

"$"

"$#



~	50𝑘 pixels/cm2

Crosses of various sizes
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~	50𝑘 pixels/cm2

Crosses  🤼   bars
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Four pads of hit pixel                            

collect 96% of the charge
Four pads of hit pixel                          

collect 97% of the charge
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Resistive strips

Strip resistance is 40% of                     
sheet resistance

Strip resistance is 2% of                     
sheet resistance



~	50𝑘 pixels/cm2

Silicon oxide trenches

Pad-to-pad trenchesTrenches equal 40% of                           
the gap
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Different pad arrangements
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DiQerent pad arrangements
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By adding silicon 
oxide trenches

25%

33%

12%

30%

28%

12%

60%


