H2M: Porting a hybrid readout architecture into a monolithic 65 nm CIS

Rafael Ballabriga, Eric Buschmann, Michael Campbell, Raimon Casanova Mohr, Dominik Dannheim, Ana Dorda, Finn King, Ono Feyens, Philipp Gadow, Ingrid-Maria Gregor, Karsten Hansen, Yajun He, Lennart Huth, Iraklis Kremastiotis, Corentin Lemoine, Stefano Maffessanti, Larissa Mendes, Younes Otarid, Christian Reckleben, Sebastien Rettie, Manuel Alejandro del Rio Viera, <u>Sara Ruiz Daza</u>, Judith Schlaadt, Adriana Simancas, Walter Snoeys, Simon Spannagel, Peter Svihra, Tomas Vanat, Anastasiia Velyka, Gianpiero Vignola, Håkan Wennlöf

PIXEL (Strasbourg, France) 21 November 2024

H2M (Hybrid-to-Monolithic)

Vertex detector requirements:

- Sensor thickness: ≤ 50 µm
- Spatial resolution: $\leq 3 \mu m$
- Time resolution: ~ ns
- Developed within the framework of R&D for future lepton colliders and test beam telescopes.
- Ports a hybrid pixel detector architecture into a monolithic chip.
- **Digital-on-top** design workflow.
- Manufactured in a modified TPSCo 65 nm CMOS imaging process.

- 35 μm pixel pitch in 64x16 pixel matrix (total sensitive area: 2.24 × 0.56 mm²). Total thickness ~ 50 μm (p-epi ~ 10 μm).
- Analog and digital front-end per pixel.

DESY. | H2M: Porting a hybrid readout architecture into a monolithic 65 nm CIS | Sara Ruiz Daza, 21-11-2024

Data acquisition

Non-simultaneous 4 acquisition modes:

- 8 bit <u>ToT</u>,
- 8 bit ToA (100 MHz clock 10 ns binning),
- photon counting (number of hits above threshold),
- triggered.

- **Readout**: 40 MHz clock, frame-based without zerosuppression.
- Integrated into the Caribou DAQ system.

↔ See poster by Younes Otarid

Test beam campaings

- H6 beam line, 120 GeV charged pions.
- Timepix3 reference telescope.
 - Pointing resolution ~ 1.5 μm
- Continuous DUT readout with 150 us (2.56 us) shutter duration for ToT (ToA) mode.

- Beamline 22, electron beam ~4.8 GeV.
- ALPIDE reference telescope.
 - Pointing resolution ~ 4 μm
- Telepix2 used as ROI trigger and timing layer (<4 ns time resolution).

↔ See talk of Arianna Wintle on Tuesday

Efficiency and fake hit rate (triggered mode)

- No significant differences between bias voltages.
- For a fake hit rate < 10 pixels/event,
 efficiency of 99.6% at a threshold of 144 e-(~5σ_{noise}) and -3.6 V.

Efficiency and fake hit rate (triggered mode)

- No significant differences between bias voltages.
- For a fake hit rate < 10 pixels/event,
 efficiency of 99.6% at a threshold of 144 e-(~5σ_{noise}) and -3.6 V.
- However, lower efficiency was measured than expected from simulations (using generic methods without proprietary information, and simulating the deep p-wells as flat profiles/nothing within the deep pwells https://arxiv.org/abs/2408.00027).

Non-uniformity in-pixel response

\star Collection electrode

Non-uniformity in-pixel response

★ Collection electrode

• Related to the size and location of the n-wells of the analog circuitry.

15 μm <u>15 μm</u> 5 μm

 \star

Analog

 \star

Digital

 \star

 \star

Digital

N-wells

Non-uniformity in-pixel response

\star Collection electrode

High ikrum

Low ikrum

- Additionally, effects of fast front-end and large pixel size.
- Qualitatively confirmed by simulations with real profiles (see next talk by Corentin Lemoine).

DESY. | H2M: Porting a hybrid readout architecture into a monolithic 65 nm CIS | Sara Ruiz Daza, 21-11-2024

Time

Time resolution (ToA)

- Strong dependency of arrival time on track impact position→timing limited by non-uniformity of charge collection.
- Better timing resolution for -3.6 V than -1.2 V due to more uniform charge-collection time across the pixel.
- No possibility of time-walk correction since charge information is not available simultaneously.

Cluster size and spatial resolution (ToT)

- Spatial resolution in X (same in Y) $\sqrt{10.8^2 3.8^2} = 10.1 \ \mu m$ (~ $35/\sqrt{12} \ \mu m$) and cluster size ~ 1.
 - Dominated by the large pitch of 35 μ m, even at low threshold.
 - Asymmetric residuals in the row direction due to the low-efficiency part.
- Analysis of rotation data ongoing (grazing-angle study) → extract active thickness.

Threshold and ToT calibration

- **Threshold calibration** to find the relation between threshold-DAC and electrons for comparison with simulations.
 - Source measurements (Fe-55, Ti).

- **Threshold calibration** to find the relation between threshold-DAC and electrons for comparison with simulations.
 - Source measurements (Fe-55, Ti).

 \rightarrow Two peak structure originates from fast/slow charge-collection regions inside the pixel. Fast signal used to obtain the calibration factor.

Threshold and ToT calibration

- **Threshold calibration** to find the relation between threshold-DAC and electrons for comparison with simulations.
 - Source measurements (Fe-55, Ti)
 - \rightarrow Two peak structure originates from fast/slow charge-collection regions inside the pixel. Fast signal used to obtain the calibration factor.
- **Test pulse calibration** to find the relation between ToT and signal height per pixel.

 \rightarrow Resolved Fe-55 K_{α} amplitude with 5% accuracy.

DESY. | H2M: Porting a hybrid readout architecture into a monolithic 65 nm CIS | Sara Ruiz Daza, 21-11-2024

Thin samples (ToT mode)

- Single-die backside thinning of H2M samples, performed by <u>OPTIM WS</u>
 - \rightarrow 30, 25, 24, 21 µm physical thickness
- Includes ~5 µm circuitry + ~10 µm epitaxial layer
- Efficiency >99% for ~200 e- threshold.
 - \rightarrow No performance degradation from thinning.
- Studying the possibility of thinning down to below 20 microns.

Summary

- Fully functional digital-on-top monolithic sensor in a 65 nm CIS.
- Calibration and characterisation of performance with laboratory and test beam measurements
 - <35 e- noise, 99.6% efficiency at a threshold of 144 e- $(\sim 5\sigma_{noise})$.
 - Spatial resolution 10.1 μ m (~ pitch/ $\sqrt{12}$).
 - Thining down to 21 µm without performance loss.
- Impact of n-wells on charge-collection → efficiency and timing limitation.
 - More details in the next talk by Corentin Lemoine.

Outlook

- Analysis of rotation data (grazing-angle study)
- Investigating the possibility of thinning the chips down to a total thickness below 20 micros.

"The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)".

Threshold equalisation and single-pixel noise

- Equalisation of the hit detection threshold:
 - 1) Threshold scan in counting mode for the 16 trimming values.
 - 2) Determine the baseline for each pixel for each trimming value.
 - 3) For each pixel, the trimming DAC is adjusted to the one that makes the closest to a fixed trimming target.
- Single pixel-noise obtained from width of threshold turn-on curves.

Triggered mode

Shutter (strobe signal) open for 500 ns vs O(ms) in ToT/ToA.

 \rightarrow <u>Efficiency</u> compatible with the other acquisition modes, <u>fake rate</u> reduced by a factor of about 100, and <u>minimum threshold</u> <u>achievable</u> ~ 144 electrons.

DESY. | H2M: Porting a hybrid readout architecture into a monolithic 65 nm CIS | Sara Ruiz Daza, 21-11-2024

- Strobe window duration accounts for time walk (~ 100 ns).
- **Preset** value accounts for the trigger latency.

Measurements with a laser setup

- Backside incidence with an infrared pulsed laser. Light intensity tuned to correspond to the ToT MPV signal of 1 MIP.
- Confirmation of the **in-pixel efficiency pattern** observed in the test beam measurements and its orientation.
- **Pixel-to-pixel differences** attributed to different returns to baseline due to differences in the circuit's Krummenacher current and feedback capacitance.

ToT calibration

pixels