caeleste

Presented at PIXEL2024 November 2024 Strasbourg

Survey of sub-electron noise CMOS image sensors

Prayag Wakale^{1,2}, Bart Dierickx¹, Filip Tavernier²

¹ Caeleste, Mechelen, Belgium ² MICAS, KU Leuven, Belgium

Outline

caeleste

- Motivation: why ultra-low noise?
- Ultra-low noise non-{CMOS image sensors}
- Introduction to CMOS image sensors
- Read noise to reach photon counting performance
- What optimizations are needed?
- Low noise readout techniques
- Literature survey
- Floating Transfer Gate (FTG) pixel
- Overview table
- References

Motivation: why ultra-low noise?

caeleste

Astronomy

- Observation of distant faint planets and stars in dark background.
- Ground-based spectroscopy of distant bodies, exoplanets.

Medical and Life science

- Study cells, genes and micro-organisms with fluorescence microscopy.
- Analysis of chemical compounds with Raman spectroscopy.

Quantum sensors

- Measurement of spatial correlation in-between photons.

Ultra low noise non-{CMOS image sensors} te

SPAD (Single Photon Avalanche Diode)

- Pros:
- Single photon detection
- Very high timing resolution (pico-sec)
- Cons:
- Dark counting and after-pulsing
- Dead time of a few nsec to 100 nsec
- High voltage is needed for operation (20-25 V)
- Large pixel and low fill factor

18 November 2024

EMCCD (Electron Multiplication Charge Coupled Devices)

- Pros: EMCCD block diagram
- High gain before Q-V conversion (usually up to 1000x)
- Cons:
- Excess noise due to the stochastic multiplication process
- Multiplication gain aging
- High voltage is needed for electron multiplication (50 V)
- Extra cooling to reduce the dark current

CMOS image sensors

caeleste

PPD - Pinned Photodiode

- Transfer Gate

- Floating Diffusion - Source Follower

- 4 Transistor pixel

- Shallow Trench Isolation

TG

FD

SF

4T

STI

RST - Reset

CMOS image sensor block diagram

Typical measures to reduce noise:

- 1. Low dark current for low Dark Current Shot Noise (DCSN)
- 2. Correlated Double Sampling (CDS) for reset noise cancellation
- 3. High Charge to Voltage conversion Factor (CVF)

18 November 2024

Read noise to reach photon counting performance

Which optimizations are needed? Caeleste

18 November 2024

Correlated Double Sampling (CDS) Caeleste

Correlated Multiple Sampling (CMS)Caeleste

Non-Destructive Readout / Multiple Correlated Sampling

DG

RST

TG

MG

SN

V_{O,PGA}

CCD inspired CMOS skipper pixel [8]

- PPD Pinned Photo Diode
- CCD Charge Coupled Device
- TG Transfer Gate
- MG Modulation Gate
- SN Sense Node
- DG Drain Gate
- RST Reset Gate
- SF Source Follower
- PGA Programmable Gain Amplifier

NOTE: This form of nondestructive readout (NDR) is referred to as "Multiple Correlated Sampling" (MCS) in further slides

18 November 2024

caeleste

Literature Survey

18 November 2024

Reset Gate less CIS (0.27 e_{RMS}^-)

Shizuoka University, Japan, 2015

Potential profile during punch-through reset [2]

Optimization area	Technique used	Impact	
Technology	110 nm CIS with PPD		
C_{FD} reduction	Reset generating implant	CVF: 220 µV/ <i>e⁻</i>	
Temperature	-10 °C	Low <i>I_{dark}</i>	
Transistor selection	N.A.		
Column readout circuit	CMS	Low read noise	

Pros:

- Reduced coupling capacitance at FD node (High CVF)

Cons:

- High voltage (25 V) required for reset
- Possibility of image lag due to p+ implant near to FD n implant
- Slow reset operation
- Low pixel fill factor

18 November 2024

5T adjustable gain CIS (0.32 e_{RMS}^{-})

EPFL, Switzerland, 2020 VDD (3.3V)

caeleste

Optimization area	Technique used	Impact	
Technology	180 nm CIS with PPD		
C_{FD} reduction	Reset with additional TX_2	CVF: 250 μV/ <i>e⁻</i>	
Temperature	27 °C		
Transistor selection	Thin oxide PMOS as SF	Cap: 0.4 fF	
Column readout circuit	CMS (Digital,4)	Low read noise	

Pros:

- Reduced coupling capacitance at FD node (High CVF)

Cons:

- Prone to image lag due to intermediate potentials
- Low fill factor (PMOS inside pixel)

A linear response CIS (0.46 e_{rms}^{-}) Tohoku University, Japan, 2015

	Optimization area	Technique used	Impact
rain	Technology	180 nm CIS with PPD	
n+	C_{FD} reduction	Low implant dose & shallow FD w/o LDD	CVF: 232 μV/ <i>e</i> ⁻
nt	Temperature	27 °C	
	Transistor selection	Buried channel NMOS as SF	Low 1/f noise
	Column readout circuit	Floating capacitor load	Low read noise

Conventional PPD and SF cross-section [4]

w/o channel stop

Optimized PPD and SF cross-section [4]

Pros:

n+

- Overall reduction in FD node capacitance
- Lower flicker noise due to buried channel NMOS as SF
- Low noise due to switched capacitor load at SF output -

Cons:

- Possibility of image lag due to removed LDD
- Prone to FD leakage due to removed channel stop beneath
- Settling error due to sampling time jitter

18 November 2024

Multi-Gate Source Follower QIS (0.17 e_{rms}^{-})

Dartmouth University, USA, 2022 COL FD 🕹 GG GG 🗕 FD 🔶 TX1 TX2 (b) \bot FD । RS sw1 ¥ ¥ swı GGo FD o GGe LSUB (d) Pixel schematic and multi-gate nmos SF variants

	٦	echno	ology	4	5/6	65 nm stacked BSI CIS
	C_{F}	_D red	uction	Si	nal	I Modulation Gate (MG)
;)	Т	emper	ature			-
	Tran	sistor	selectio	n	Βu	iried channel devices
	Col	umn r circu	eadout uit		(CDS + Amplification
ligh C ower ower	VF C _{FD} W*L	Pinning (p+) Pwell (p)	TG PW(p-) PB(p) SW(n)	Pini FD(n+) Pwell (p)	ning (p+)	Results based on TO and spectrum analyz Pixel characterizatio
VS						Research Question
ow 1/i ligh W	[:] noise /*L		Deep Nwell(n-)		 Physics behind o Optimum integral

Optimization area

Technology

Jot device structure [13]

s based on TCAD simulations ectrum analyzer data.

characterization is needed !

arch Questions:

vsics behind obtained results?

- timum integrate gap size?
- 3. Optimum value of GG bias?

PIPC **Technique used** Impact

CVF: 700 µV/e⁻

Low 1/f noise

Low read noise

Inversion-Accumulation cycling CIS (0.34 e_{RMS}^{-})

Caeleste, Belgium, 2015

Optimization area	Technique used	Impact		
Technology	180 nm CIS with PPD			
C_{FD} reduction	-			
Temperature	- 40 °C	Low <i>I</i> _{dark}		
Transistor selection	PMOS as CS amplifier	Low 1/f noise		
Readout circuit	CTIA while modulating inversion-accumulation	CVF: 400 µV/ <i>e</i> -		

Pros:

- Flicker noise reduction with inversion-accumulation cycling
- High CVF due to CTIA gain

Cons:

confidential

- Very high number of samples required (Low FPS)
- Cooling is needed to lower the dark current
- Low pixel fill factor (PMOS inside pixel)

caeleste

Skipper in CCD - CMOS CEI, Open University, UK 2020

Skipper in CCD - CMOS ,NU South CONICET, Argentina, 2024

Optimization area	Technique used	Impact		
Technology	CIS with CCD	Skipper CCD		
C_{FD} reduction	-			
Temperature	-155 °C	Low <i>I_{dark}</i>		
Transistor selection	NMOS	High SF Gain		
Column readout circuit	NDR + MCS	Low noise		

Pixel device structure and schematic [8]

Pros:

- CCD originating non-destructive readout in CMOS
- Readout noise can be reduced to very low levels with multiple correlated samples

Cons:

- Low fill factor due to multiple poly-silicon gates
- Very high number of samples to reach desired noise level (Low FPS)
- Cooling is required to lower the dark current

confidential

caeleste

Floating Transfer Gate CIS Caeleste, Belgium, 2024

Patent pending

caeleste

• Compensation capacitor and voltage is required to compensate the crosstalk of CTIA output and reference input during modulation

Overview table

caeleste

Reference	[2]	[4]	[7]	[3]	[5]	[6]	[8]	[Ongoing work]
	Shizuoka	Tohoku	Caeleste	EPFL	CEI	Dartmouth	CONICET	Caeleste
Year of	2015	2015	2015	2020	2020	2022	2024	2024
publication								
Noise (e_{rms}^-)	0.27	0.46	0.34	0.32	NA	0.17	0.15	Not available yet
Pixel circuit	Reset	SF readout	CTIA with	5T pixel with	CCD	Pixel shared	CCD skipper	Floating Transfer
topology	gateless pixel		modulated bulk	SF readout	skipper with	FD with SF	with SF	Gate (FTG) pixel
	with SF				SF readout	readout	readout	
	readout							
Circuit	High CG	High CG	Switched bulk	High CG	NDR (MCS)	Multi-gate SF	NDR (MCS)	NDR (MSC)
operation	pixel	pixel	biasing of in-	pixel		with high CG		
technique			pixel amplifier			pixel		
Device /	Reduction in	Low doping,	Standard CIS	Additional TX	CCD	Low FD	CCD skipper	Floating TG
technology	C _{FD}	Shallow FD		gate for the	skipper in	Capacitance,	in CMOS	island in PPD
optimizations	capacitance	junction		reset	CMOS	and SF		
						modification		
technology	Low V _{th}	Buried	PMOS as	Thin oxide	CCD-CMOS	Buried	CCD-CMOS	4T CIS
	NMOS	channel	CS amplifier	PMOS		channel		
		NMOS				NMOS		
Oversampling	N.A.	N.A.	1600 (CMS)	4 (CMS)	34 (MCS)	N.A.	3025 (MCS)	MCS

References

caeleste

- [1] N. Teranishi, "Required Conditions for Photon-Counting Image Sensors," in IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2199-2205, Aug. 2012, doi: 10.1109/TED.2012.2200487
- [2] Min-Woong Seo, Shoji Kawahito, Keiichiro Kagawa, and Keita Yasutomi, "A 0.27 e_{rms} Read Noise 220 μV/e⁻ Conversion Gain Reset-Gate-Less CMOS Image Sensor With 0.11-um CIS Process", IEEE Electron Device Letters, December 2015, Vol. 36, No. 12
- [3] A. Boukhayma, A. Caizzone and C. Enz, "A CMOS Image Sensor Pixel Combining Deep Sub-Electron Noise with Wide Dynamic Range," IEEE Electron Device Letters, June 2020, vol. 41, no. 6, pp. 880-883, doi: 10.1109/LED.2020.2988378
- [4] S. Wakashima, F. Kusuhara, R. Kuroda, and S. Sugawa, "A linear response single exposure CMOS image sensor with 0.5 e⁻ readout noise and 76 ke⁻ full well capacity," Symposium on VLSI Circuits (VLSI Circuits), 2015, Kyoto, Japan, pp. C88-C89, doi: 10.1109/VLSIC.2015.7231334.
- [5] Stefanov, K.D.; Prest, M.J.; Downing, M.; George, E.; Bezawada, N.; Holland, A.D. Simulations and Design of a Single-Photon CMOS Imaging Pixel Using Multiple Non-Destructive Signal Sampling. Sensors 2020, 20, 2031. https://doi.org/10.3390/s20072031
- [6] Wei Deng and Eric R. Fossum, "Deep Sub-Electron Read Noise in Image Sensors Using a Multigate-Source-Follower," IEEE Transactions on Electron Devices, June 2022, Vol. 69, No. 6
- [7] Qiang Yao, Bart Dierickx, Benoit Dupont, and Gerlinde Ruttens, "CMOS Image Sensor reaching 0.34 e_{rms}^- read noise by inversion-accumulation cycling", Proceedings of the International Image Sensor Workshop, June 2015
- [8] Lapi, Agustin J. et al. "Skipper-in-CMOS: Nondestructive Readout With Subelectron Noise Performance for Pixel Detectors." IEEE Transactions on Electron Devices 71 (2024): 6843-6849.
- [9] M. -W. Seo, T. Wang, S. -W. Jun, T. Akahori and S. Kawahito, "A 0.44 e⁻_{rms} read-noise 32 fps 0.5 Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset," IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 80-81, doi: 10.1109/ISSCC.2017.7870270
- [10] M. Sato et al., "A 0.50 e_{rms} Noise 1.45 μm Pitch CMOS Image Sensor with Reference-Shared In-Pixel Differential Amplifier at 8.3 Mpixel 35 fps,"
 IEEE International Solid-State Circuits Conference (ISSCC), 2020, San Francisco, CA, USA, pp. 108-110, doi: 10.1109/ISSCC19947.2020.9063017
- [11] Ultra Low Noise CMOS Image Sensors, Boukhayma Assim, Springer Theses, ISBN 9783319687742, 2017
- [12] Nobuhiro Kawai, Shoji Kawahito, Effectiveness of a correlated multiple sampling differential averager for reducing 1/f noise, IEICE Electronics Express, 2005, Volume 2, Issue 13, Pages 379-383. <u>https://doi.org/10.1587/elex.2.379</u>
- [13] Jiaju Ma, D. Hondongwa and E. R. Fossum, "Jot devices and the Quanta Image Sensor," 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014, pp. 10.1.1-10.1.4, doi: 10.1109/IEDM.2014.7047021.

18 November 2024

caeleste

Thank you for your attention !

Comparison of NTF after CMS and Mcsleste

• With increase in number of samples, in CMS, correlation between reset and signal samples reduces as time gap increases, and hence flicker noise doesn't reduce further and saturates at a level.

18 November 2024

Comparison of flicker noise power Caeleste after CMS and MCS

• For settling of voltage signal with accuracy of 99%, $\omega_c t_{cs}$ must be higher than 4.6.

• Two samples in MCS are more effective than infinite samples in CMS.

18 November 2024