A prototype pixel readout chip with column-level ADC for high frame rate XFEL applications

Shijie Lu^{1,4}, Zizhao Ji^{1,4}, Tao Sun¹, Fuwan Gan¹, Zhen Sheng¹, Zhi Liu³, Tianyang Wang^{2*}

SIMIT

1. Shanghai Institute of Microsystem and Information Technology*; 2.* Shanghai Optoelectronics Science and Technology Innovation Center*; 3.* ShanghaiTech University*; 4. University of Chinese Academy of Sciences*

References

[1] A. Allahgholi, et al., The Adaptive Gain Integrating Pixel Detector at the European XFEL, Journal of Syn chrotron Radiation 26 (2019) 74 [2] A. Mozzanica, et al., JUNGFRAU Detector for Applications at Synchrotron Light Sources and XFELs, Syn chrotron Radiation News 31 (2018) 16 [3] Z. Ji, et al., An 11-bit SAR ADC for high frame rate and high-dynamic X-ray imaging at future XFELs, Journal of Instrumentation 19 (2024) 07

Conclusion

• A small-scale prototype chip designed to verify a digital readout architecture with

column level ADCs for X-ray detectors at future XFELs

- The baseline pixel design aims at detection of 12keV photons
- **-** Good single-photon resolution achieved @ 12keV with SNR > 10
- **-** Full dynamic range ~ 10⁴ photons @12keV
- The envisaged full-size ASIC chips will extend the pixel array to 96 x 96 pixels
- **-** With the current ADC design working at 1MSps, a frame rate of > 10kHz can be achieved

This work presents a high dynamic and high frame rate pixel readout ASIC (Application Specific Integrated Circuit) prototype chip of 16 \times 16 pixel array with digital readout architecture working at 10kHz frame rate for applications at next generation XFELs. This chip was designed and fabricated in a 130 nm CMOS process to validate the functionality. The pixel size is 150 μ m \times 150 μ m.

The Eleventh International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (Pixel2024)

• This prototype chip has 8 different pixel designs • The baseline pixel design as shown in Figure 4 is discussed in this poster, which

Figure 3 small-scale prototype chip structure

Instead of multiplexing the analog signals from the pixel matrix to a few output ports like conventional XFEL detectors[1,2], the presented chip incorporates a low power, small area 11-bit SAR-ADC (analog-to-digital converter) at each column end to digitize the pixel analog signal transmitted sequentially from the column. These ADCs operate at the speed of 1MSps, each sampling and digitizing a column of 16 pixels row by row.

Figure 7 Prototype chip photograph

Introduction

As compared to the previous generation of synchrotron light sources, the new generation of X-ray free electron laser (XFEL) facilities can delivery femtosecond Xray pulses with ultra-high peak brightness, which in turn calls for high performance integrating type pixel detectors with high dynamic range, high frame rate, low noise.

- Correlated double sampling (CDS) after CSA to reduce the reset noise and low frequency noise at the first gain stage
- **•** The 11-bit SAR-ADC at the end of each pixel column is designed to ensure sufficient resolution over the entire dynamic range [3]
- **•** Each pixel is equipped with two injection circuits that can generate electrical stimulus to emulate the photon signals(See Figure 4)
- **-** Voltage injection: Inject an adjustable voltage step through a capacitor into the pixel input node, generating a total amount of charge equal to $V_{\text{inj}} \times C_{\text{inj}}$. The maximum injection voltage is equal to the supply voltage of 1.2 V, which is equivalent to \sim 243 photons @12keV
- **-** Current injection: Use a controlled current source to inject current pulses into the pixel input node, generating a total amount of charge equal to $\lim_{x \to \infty}$ Tinj, which can cover the full dynamic range of the pixel

- **•** Uniform performance over the measured sub-matrix
- The pixels in each column are sequentially read out row by row. In the first gain stage, the later a pixel is read out, the higher its noise level

Figure 14 Noise distribution of the first gain stage **Figure 15** Noise distribution of the second gain stage

occupies the last two column of the matrix (see Figure 7)

Measurement Object & Operating Timeline

