

ALICE Inner Tracking System 3 Overview Felix Reidt (CERN) on behalf of the ALICE Collaboration

ALICE Inner Tracking System 3 Overview | PIXEL 2024 | 2024-11-21 | Felix Reidt (CERN)

for

- Replacement of ITS2 Inner Barrel with 3 layers of curved, 50 µm thick, wafer-scale MAPS
- Air cooling & ultra-light mechanical supports
- Reduced material budget of on average 0.09% X₀ instead of 0.36% X₀ per layer
- Smaller radius of the innermost layer: 19 mm instead of 23 mm

ITS3 TDR — CERN-LHCC-2024-003

The Inner Tracking System 3 (ITS3)

Beam pipe

- Replacement of ITS2 Innel with 3 layers of curved, 50 wafer-scale MAPS
- Air cooling & ultra-light me
- Reduced material budget of on average **0.09%** X₀ instead of **0.36%** X₀ per layer
- Smaller radius of the innermost layer: 19 mm instead of 23 mm

ITS3 TDR — CERN-LHCC-2024-003

Stitching Air cooling

Outer layers

Middle layers

Inner Bar

0.3 0.2

TPSCo 65 nm technology qualification — pixel prototype chips (selection)

- Multi-Layer Reticle 1 (MLR-1): common effort by ALICE ITS3 and CERN EP R&D
- Various small scale prototypes with pixel matrices and ancillary circuitry •
- Technology explored far beyond the requirements of ITS3 in terms of radiation hardness and time resolution \Rightarrow Promising also for future applications like ALICE 3 Vertex Detector and FCC-ee

A. Sturniolo - Testing small devices for ALICE ITS3 upgrade [Poster] A. Lorenzetti - Performance studies of the CE-65v2 MAPS prototype structure [Poster] I. Sanna - TCAD and charge transport simulations of MAPS in 65nm for the ALICE ITS3 [Poster] G. Borghello - Optimization of monolithic pixel sensors for high energy physics applications using 3D TCAD simulations [Poster]

Stitching

- Reticle design split into:
 - Left End Cap (LEC)
 - Repeated Sensor Unit (RSU)
 "A" denotes active area
 - Right End Cap (REC)

Stitching

- Reticle design split into:
 - Left End Cap (LEC)
 - Repeated Sensor Unit (RSU) "A" denotes active area
 - Right End Cap (REC)
- Segment: LEC, multiple RSUs, REC

Stitching

- Reticle design split into:
 - Left End Cap (LEC)
 - Repeated Sensor Unit (RSU) "A" denotes active area
 - Right End Cap (REC)
- Segment: LEC, multiple RSUs, REC
- Pixel chip:
 - Multiple, independent segments
 - Interfacing only via LEC, REC

Pixel chip

A	A	•••	A	A	A
A	A	•••	A	A	A
					•

Stitched wafer-scale MAPS — Engineering Run 1 (ER-1)

Engineering Run 1 (ER-1)

- First MAPS for HEP using stitching
 - one order of magnitude larger than previous chips
 - based on TPSCo 65 nm
- "MOSS": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 µm²)
 - conservative design (increased feature spacing), different pitches
- "MOST": 2.5 x 259 mm, 0.9 MPixel $(18 \times 18 \ \mu m^2)$
 - more dense design, different approach to deal with defects
- Baby-MOSS (single stitch $\rightarrow \sim$ reticle-sized)
- Plenty of small chips (like MLR-1)

L. Terlizzi - Characterization of MOSS for the ALICE ITS3 for the LHC Run 4 [Nov 21st, 16:40] M. Selina - Exploring ALICE ITS3 MOST [Nov 21st, 16:57]

Engineering Run 1 wafer with various dies

Stitched wafer-scale MAPS — MOSS — current results

Stitched wafer-scale MAPS — MOSS — production yield

Shorts detected in (Baby-)MOSS

- Rather large number of shorts are observed
- Reason identified (shorts between metal layers)
- Metal stack change foreseen to facilitate power distribution expected to mitigate this issue
- Functional yields for 'powerable' chips: being studied in detail, small losses

Stitched Wafer-Scale MAPS — MOSAIX

• Final full size, full functionality sensor

- Modular design:
 - Sensor divided into 5 segments (allowing to use 3, 4 or 5 segments for layers 0, 1 and 2, respectively)
 - 12 Repeated Sensor Units (RSUs) / segment
 - 12 tiles / RSU (independent powering, control and readout) \rightarrow 144 tiles corresponding to 0.7% modularity
- Fractional sensitive area: 93%
- Interfacing:
 - Powering LEC and REC sides
 - Control and readout from the LEC only

Stitched Wafer-Scale MAPS — MOSAIX

• Final full size, full functionality sensor

- Modular design:
 - Sensor divided into 5 segments (allowing to use 3, 4 or 5 segments for layers 0, 1 and 2, respectively)
 - 12 Repeated Sensor Units (RSUs) / segment
 - 12 tiles / RSU (independent powering, control and readout) \rightarrow 144 tiles corresponding to 0.7% modularity
- Fractional sensitive area: 93%
- Interfacing:
 - Powering LEC and REC sides
 - Control and readout from the LEC only

-<u>Pixel</u>:

- Size: 20.8 x 22.8 µm²
- Detection efficiency: > 99%
- Fake-hit rate: 10⁻⁶ / pixel / event
- <u>Hit load and readout</u>:
 - 5.75 MHz / cm² particle hit rate (Pb-Pb, safety factor 2)
 - Minimum integration window: 2 µs
 - Off-chip data transmission: 30.72 Gb/s
 - Multiple 5.12 / 10.24 Gb/s links
- Radiation load*:
 - Non-Ionising Energy Loss (NIEL): ~ 4 x 10¹² 1 MeV n_{eq} cm⁻²
 - Total Ionising Dose (TID): ~ 4 kGy / 400 krad * recent estimates, based on radiation dose absorbed by ITS2
- <u>Power dissipation (active area)</u>: < 40 mW / cm²
- Submission to foundry planned for early 2025

Interdependencies and integration: 'module on a chip' •

- Interdependencies and integration: 'module on a chip'
- Fractional sensitive area of 93%
 - No overlap zones (like in 'conventional' detectors)
 - Readout and biasing need peripheral circuits

ALICE Inner Tracking System 3 Overview | PIXEL 2024 | 2024-11-21 | Felix Reidt (CERN)

- Interdependencies and integration: 'module on a chip'
- Fractional sensitive area of 93%
 - No overlap zones (like in 'conventional' detectors)
 - Readout and biasing need peripheral circuits
- Power distribution
 - Voltage drops on the on-chip metals of the CMOS stack significant
 - Complex segmentation in many independent domains (tiles)
 - Switches and cross-domain signalling and protections

- Interdependencies and integration: 'module on a chip'
- Fractional sensitive area of 93%
 - No overlap zones (like in 'conventional' detectors)
 - Readout and biasing need peripheral circuits
- Power distribution
 - Voltage drops on the on-chip metals of the CMOS stack significant
 - Complex segmentation in many independent domains (tiles)
 - Switches and cross-domain signalling and protections
- Significant leakage
 - Large variations with process and temperature
 - Mitigation e.g. w/ custom low-leakage standard cell library

- Interdependencies and integration: 'module on a chip'
- Fractional sensitive area of 93%
 - No overlap zones (like in 'conventional' detectors)
 - Readout and biasing need peripheral circuits
- Power distribution
 - Voltage drops on the on-chip metals of the CMOS stack significant
 - Complex segmentation in many independent domains (tiles)
 - Switches and cross-domain signalling and protections
- Significant leakage
 - Large variations with process and temperature
 - Mitigation e.g. w/ custom low-leakage standard cell library
- Data transmission
 - Integrate 144 on-chip transmission lines of 25 cm working at 160 Mb/s
 - High speed (10.24 Gb/s) wireline drivers for off-chip transmission

Detector services

- Services located outside the ALICE acceptance • Data transmission, monitoring and control: Versatile Link+
 - Powering: cascaded **CERN bPOL DC-DC converters**

Mechanics and assembly

Simplified drawing schematic of the ALICE ITS3

Model for thermal and thermoelastic testing

Mechanics prototyped and studied with various models Next model based based on ER-2 pixel sensors and final design Validation of layout, assembly jigs and procedure as well as installation minimum clearances

Mechanics and assembly — air cooling

Model for thermal studies with temperature sensors and heaters

Mechanics and assembly — air cooling

Model for thermal studies with temperature sensors and heaters

Physics impact

DCA resolution improved by a about a factor of $2 \rightarrow$ improved separation of secondary vertices •

Physics impact

- DCA resolution improved by a about a factor of 2 \rightarrow improved separation of secondary vertices
- Many fundamental observables strongly profiting or becoming in reach
 - Charmed and beauty baryons
 - Low-mass di-electrons
 - Full topological reconstruction of B_s

oved separation of secondary vertices ming in reach

> ITS3 physics performance studies: <u>ALICE-PUBLIC-2023-002</u>

Summary

- ITS3 pioneers of bent, wafer-scale MAPS
 - Small inner radius: 19 mm
 - Low average material budget: $0.09\% X_0$ / layer
- Wafer-scale MAPS feasibility demonstrated with ER-1
 - Detection efficiency and fake-hit rate sufficient
 - Yield studied in detail
- MOSAIX to be submitted in ER-2 in early 2025
 - Full-size, full functionality
 - High segmentation to improve yield
- ITS3 services based on Versatile Link+ and bPOL
- Mechanics design well advanced •
 - Assembly procedure and design studied in various models
 - Air cooling demonstrated, vibrations with in 1 µm peak-to-peak
 - Final design models to be built from ER-2 pixel chips

Thanks a lot for your attention!

L. Terlizzi - Characterization of MOSS for the ALICE ITS3 for the LHC Run 4 [Nov 21st, 16:40] M. Selina - Exploring ALICE ITS3 MOST [Nov 21st, 16:57] A. Sturniolo - Testing small devices for ALICE ITS3 upgrade [Poster] A. Lorenzetti - Performance studies of the CE-65v2 MAPS prototype structure [Poster] I. Sanna - TCAD and charge transport simulations of MAPS in 65nm for the ALICE ITS3 [Poster] G. Borghello - Optimization of monolithic pixel sensors for high energy physics applications using 3D TCAD simulations [Poster]

Extra Material

LHC LS3		L		LH	IC Run 4				
)27	2028	2029	20	30	2031	2032			
bled commi & tran to A	ssioned sported LICE	 Next steps: Tapeout of ER-2 Preparation of the testing of ER-2 Finalisation and validation of the mechanic design 							
al Model (FM) sed on ER-3		 Additional contingency due to the net Long Shutdown 3 (LS3) schedule: – Possibility to add an ER-4 – Possibility to extend the ER-2 testing phase 							

cal

ew

se

4-point bending tests

ITS3 TDR — CERN-LHCC-2024-003

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1028, 1 April 2022, 166280

First demonstration of in-beam performance of bent Monolithic Active **Pixel Sensors**

ALICE ITS project 1

Show more 🗸

+ Add to Mendeley 😪 Share 📑 Cite

https://doi.org/10.1016/j.nima.2021.166280 7

Get rights and content 7

Abstract

A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20–40 μ m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5 cm \times 3 cm ALPIDE chips. Already with their thickness of 50 µm, they can be successfully bent to radii of about 2 cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4 GeV electron beam, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance.

doi.org/10.1016/j.nima.2021.166280

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1028, 1 April 2022, 166280

First demonstration of in-beam performance of bent Monolithic Active **Pixel Sensors**

ALICE ITS project 1

Show more \checkmark

+ Add to Mendeley 😪 Share 📑 Cite

https://doi.org/10.1016/j.nima.2021.166280 7

Get rights and content 7

Abstract

A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20–40 μ m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5 cm \times 3 cm ALPIDE chips. Already with their thickness of 50 µm, they can be successfully bent to radii of about 2 cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4 GeV <u>electron beam</u>, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance.

doi.org/10.1016/j.nima.2021.166280

Clearly proving that bent MAPS are working!

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1028, 1 April 2022, 166280

First demonstration of in-beam performance of bent Monolithic Active **Pixel Sensors**

ALICE ITS project 1

Show more \checkmark

+ Add to Mendeley 😪 Share 📑 Cite

https://doi.org/10.1016/j.nima.2021.166280 7

Get rights and content 7

Abstract

A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20–40 μ m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5 cm imes 3 cm ALPIDE chips. Already with their thickness of 50 µm, they can be successfully bent to radii of about 2 cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4 GeV <u>electron beam</u>, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance.

doi.org/10.1016/j.nima.2021.166280

