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Scientific drivers for the use of MAPS in
space

« Future “high-energy” space observatories require:
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Yai B Ay A NY) a
F: Astr Pi'3}
- Torix
l’;:lG UB?!F 2

AstroPix3

V&2 ALADINO

httpS //d0|org/101007/510686-021-0970- httDS //d0|0rg/1010 16/] .nima.2024.169762



https://doi.org/10.1016/j.nima.2022.167215
https://doi.org/10.1016/j.nima.2024.169762

“  The CSES mission
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China Seismo-Electromagnetic
Satellite Program
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* CSES: China Seismo-Electromagnetic
Satellites.

* Program developed by Chinese and Italian
Space Agencies.

* CSES-01:launched on Feb 2018 and operating.
e CSES-02:launch scheduled on 30 Dec 2024.

* Main scientific objectives.

* Monitoring of electromagnetic and plasma
environment in near-Earth space.

* Measurements of ionospheric and
magnetospheric perturbations of different

particle

origins: seismic phenomena, tropospheric and
anthropic transients, solar activity... zenith e
* Study of fluxes of charged particles entrance gl
precipitating from the Van Allen radiation window | 1 -
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Anticoincidence system

Bottom
veto

The HEPD-02 detector

Second trigger plane

Kin. energy range (electron)

Kin. energy range (proton)

Angular resolution

Energy resolution

Particle selection efficiency

Detectable flux
Operating temperature
Operating pressure
Mass budget

Power Budget

Data budget

3 MeV to 100 MeV

30 MeV to 200 MeV

=10° for E,;,> 3 MeV electrons

<10% for E;, > 5 MeV electrons

>90%

up to 10’ m2s7sr

-10°C to +35°C

< 6.65- 102 Pa ("vacuum")
50 kg

45 W

< 100 Gb/day
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Tracker construction and integration

A team effort:

) . Quality TAG | HIC assembly + bonding | HIC post Tab/'Wings cut | Stave Assembly
* HIC assemblyin Torino Total: 68 42 35
e Wire bond|ng in Bari GOLD 25 = 36.8% 19 = 45.2% 19 = 54 3%
) . SILVER 15 =22.1% 14 = 33.3% 11 = 31.4%
* Stave assembly in Torino BRONZE 3 = 4.4% 3= T.1% 3 = B.6%
e Turret assembly in Trento NOT OK 25 = 36.8% 6= 143% 2=5T%

* Turret characterisation in Trento
* Trackerassemblyin
* Integration on HEPD-02 in

FPCHoTder
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Power management of ALTAI

666016/contributions/2722251 /attachments/1523408/2380925/20170914-ALPIDE-
FoCal-StudytAgdlieri.pdf
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Power management of ALTAI

Anticoincidence system
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The building block of HEPD-02 detectoris the ALTAI
detector

ALTAIl power consumption ~ 35 mW/cm?

HEPD-02 power budget allowed only ~10 mW cm?

The first solution was to work on ALICE Outer barrel mode,
1 master chip every 5

We also decided to move the data readout to the slow
control line

Another solution implemented was to hold the clock
between triggers

To further reduce the control, we designed the trigger plane
of the experiment with the same segmentation of the tracker
Only the turrets that are most probably involved in the
event are read out



Space qualification

January 2021 March - May 2023
June 2019 Design qualification: HEPD-02 qualification:
Technology qualification: « OnHEPD-02 turret « OnHEPD-02 QM and FM
* OnaALICE Outerbarrel stave e Vibration test * Vibration test
* Vibration test * Thermalvacuum test * Thermalvacuum test
* Thermal vacuum test * Thermalcycles * Thermalcycles

-

* Pyroshock (only on QM)

Thermalvacuum and vibration tests @ SERMS (Terni, Italy)

Thermal cycles @ FBK (Trento, Italy),
DIl department of Trento University and SERMS



HEPD-02 characterisation campaign

Calibration tests:

Carbon @ CNAO (Pavia, Italy) in
December 2022 and January 2023
Electrons (30-450 MeV) @ BTF (Frascati,
Italy) April 2023

Full characterisation:

Protons @ Proton Therapy Center
(Trento, Italy) June 2023

Electrons (6-12 MeV) and photons (4-10
MV) @ S. Chiara Hospital (Trento, Italy)
June 2023

Electrons (30-450 MeV) @ BTF (Frascati,
ltaly) June 2023

Carbon @ CNAO (Pavia, Italy) July 2023
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HEPD-02 performance: arrival direction
reconstruction

* Map of tracker noisy pixels (~ 1 k over 80 M) obtained with periodic on-line calibration.
* Foreach event, "non-noisy" hit pixels are clustered (DBSCAN) and track seeds are identified (Hough

transform).

* 3D best-fit track (or tracks, for multi-particle events) is determined.
* Residual noise clusters are easily identified by requiring 3-planes tracks (efficiency > 70%). ‘

Example: side views of a real event with two
cosmic-muon tracks and a noise cluster.

X-Z View
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@ track 0, HT plane x;
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FIGURE 2 PROJECTION OF COLINEAR POINTS ONTO A LINE
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Tracking performance
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Spatial resolution obtained from the squared sum of mean and
sigma obtained from the fit of residuals

Discrepancies are to be attributed to the mean value of
distributon (it can be corrected!)
Spatial resolution for the pixel detectorsis 4 pm for MIPs
Without any kind of software correction we have 7 pm
Software corrections under development

== a/x+b,fit electrons
== a/x+Db, fit protons
-- a/x+b, fit carbon
Electron BTF + LINAC, mode +/- HWHM
Proton APSS, mode +/- HWHM

Carbon CNAO, mode +/- HWHM

Uncertainty | of
reconstructed
direction for quasi-
vertical incidence
(beam test data).

200

Beam energy [MeV or MeV/amu]
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Particle identification: tracker contribution

25 ¢ proton, mean +/- HWHM
¢ ¢ electron, mean +/- HWHM
+ ¢ carbon, mean +/- HWHM
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* Clear beam particle (e-/p/carbon) separation by the energy
dependence of tracker cluster size (pixel number).

* The cluster size can give hints for particle identification but has
to work in synergy with the information from the calorimeter

Bkg. Rejection rate

* Therelevant informationis combined
via Deep Neural Network (DNN), to
optimize background rejection rate
vs. selection efficiency.

Simulated e*/p separation performance,
with expected particle flux along the orbit.
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Conclusions

There is a wide interest on using MAPS for space based observation of neutral and charged
radiation

The HEPD-02 detector will be the first experiment in space with a particle tracker realised with
MAPS

The technology and the design have been qualified to TRL 8, the launch is scheduled for December
30,2024

With the successful use of ALTAIl in space a new benchmark on tracking technologies for space will
be set

The approach used by the Limadou collaboration significantly shortened the typical delay between
establishment on ground and use in space of a technology

We are already working for the space qualification of the newest technologies (stitched detector)
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Thank you!
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