

The first MAPS based tracker for space applications

Ester Ricci, on behalf of the Limadou collaboration

Ester.ricci@unitn.it

Università di Trento INFN-TIFPA

PIXEL2024, November 18, 2024

Scientific drivers for the use of MAPS in

space

- Future "high-energy" space observatories require:
 - tens of squared meters of tracking layer → diverse purposes
 - o(µm) point o(100 ps) time resolution
 - dm²/sensor area to reduce the complexity
 - "Monolithicity" seems to be the key for low-noise and high-performance.
- Gamma-ray astrophysics would also benefit from HV-CMOS based sensors
- Several dedicated MAPS are under development (AstroPix projects) but it takes time and resources

AstroPix3

https://doi.org/10.1016/j.nima.2024.169762

The CSES mission

zenith

- CSES: China Seismo-Electromagnetic Satellites.
 - Program developed by Chinese and Italian Space Agencies.
 - CSES-01: launched on Feb 2018 and operating. •
 - CSES-02: launch scheduled on 30 Dec 2024.

Main scientific objectives.

- Monitoring of **electromagnetic and plasma** • environment in near-Earth space.
- Measurements of ionospheric and ٠ magnetospheric perturbations of different origins: seismic phenomena, tropospheric and anthropic transients, solar activity...
- Study of fluxes of charged particles precipitating from the Van Allen radiation belts.

particle

window

The HEPD-02 detector

Kin. energy range (electron)	3 MeV to 100 MeV	
Kin. energy range (proton)	30 MeV to 200 MeV	
Angular resolution	≤10° for E _{kin} > 3 MeV electrons	
Energy resolution	≤10% for E _{kin} > 5 MeV electrons	
Particle selection efficiency	> 90%	
Detectable flux	up to 10 ⁷ m ⁻² s ⁻¹ sr ⁻¹	
Operating temperature	-10 °C to +35 °C	
Operating pressure	≤ 6.65 · 10 ⁻³ Pa ("vacuum")	
Mass budget	50 kg	
Power Budget	45 W	
Data budget	≤ 100 Gb/day	

HEPD-02 tracker design

Tracker construction and integration

A team effort:

- HIC assembly in Torino
- Wire bonding in **Bari**
- Stave assembly in Torino
- Turret assembly in Trento
- Turret characterisation in Trento
- Tracker assembly in Roma Tor Vergata
- Integration on HEPD-02 in Roma Tor Vergata

Quality TAG	HIC assembly + bonding	HIC post Tab/Wings cut	Stave Assembly
Total:	68	42	35
GOLD	25 = 36.8%	19 = 45.2%	19 = 54.3%
SILVER	15 = 22.1%	14 = 33.3%	11 = 31.4%
BRONZE	3 = 4.4%	3 = 7.1%	3 = 8.6%
NOT OK	25 = 36.8%	6 = 14.3%	2 = 5.7%

Power management of ALTAI

https://indico.cern.ch/event/

666016/contributions/2722251/attachments/1523408/2380925/ 20170914-ALPIDE-

- The building block of HEPD-02 detector is the ALTAI detector
- ALTAI power consumption ~ 35 mW/cm²
- HEPD-02 power budget allowed only ~10 mW cm²
- The first solution was to work on ALICE Outer barrel mode, 1 master chip every 5
- We also decided to move the data readout to the slow control line
- Another solution implemented was to hold the clock between triggers

Power management of ALTAI

- The building block of HEPD-02 detector is the **ALTAI** detector
- ALTAI power consumption ~ 35 mW/cm²
- HEPD-02 power budget allowed only ~10 mW cm²
- The first solution was to work on ALICE Outer barrel mode, 1 master chip every 5
- We also decided to move the data readout to the **slow control line**
- Another solution implemented was to hold the clock between triggers
- To further reduce the control, we designed the trigger plane of the experiment with the same segmentation of the tracker
- Only the turrets that are most probably involved in the event are read out

Space qualification

June 2019

Technology qualification:

- On a ALICE Outer barrel stave
- Vibration test
- Thermal vacuum test

Thermal vacuum and vibration tests @ SERMS (Terni, Italy)

Thermal cycles @ FBK (Trento, Italy), DII department of Trento University and SERMS

January 2021

Design qualification:

- On HEPD-02 turret
- Vibration test
- Thermal vacuum test
- Thermal cycles

HEPD-02 qualification:

- On HEPD-02 QM and FM
- Vibration test
- Thermal vacuum test
- Thermal cycles
- Pyroshock (only on QM)

HEPD-02 characterisation campaign

Calibration tests:

- **Carbon** @ **CNAO** (Pavia, Italy) in December 2022 and January 2023
- Electrons (30-450 MeV) @ BTF (Frascati, Italy) April 2023

Full characterisation:

- Protons @ Proton Therapy Center (Trento, Italy) June 2023
- Electrons (6-12 MeV) and photons (4-10 MV) @ S. Chiara Hospital (Trento, Italy) June 2023
- Electrons (30-450 MeV) @ BTF (Frascati, Italy) June 2023
- Carbon @ CNAO (Pavia, Italy) July 2023

HEPD-02 performance: arrival direction reconstruction

- Map of tracker noisy pixels (~ 1 k over 80 M) obtained with periodic on-line calibration.
- For each event, "non-noisy" hit pixels are clustered (DBSCAN) and track seeds are identified (Hough transform).
- **3D best-fit track** (or tracks, for multi-particle events) is determined.
 - Residual noise clusters are easily identified by requiring 3-planes tracks (efficiency > 70%).

Tracking performance

DIR_04_3

- **Spatial resolution** obtained from the squared sum of mean and sigma obtained from the fit of residuals
- Discrepancies are to be attributed to the mean value of distributon (it can be corrected!)
- Spatial resolution for the pixel detectors is 4 µm for MIPs
- Without any kind of software correction we have 7 µm
- Software corrections under development

Uncertainty ψ of reconstructed direction for quasivertical incidence (beam test data).

Particle identification: tracker contribution

- Clear beam particle (e⁻/p/carbon) separation by the energy dependence of tracker cluster size (pixel number).
- The cluster size can give hints for particle identification but has to work in synergy with the information from the calorimeter

• The relevant information is combined via **Deep Neural Network (DNN)**, to optimize background rejection rate vs. selection efficiency.

Conclusions

- There is a wide interest on using MAPS for space based observation of neutral and charged radiation
- The HEPD-02 detector will be the first experiment in space with a particle tracker realised with MAPS
- The technology and the design have been qualified to TRL 8, the launch is scheduled for December 30, 2024
- With the successful use of ALTAI in space a new benchmark on tracking technologies for space will be set
- The approach used by the Limadou collaboration **significantly shortened** the typical delay between establishment on ground and use in space of a technology
- We are already working for the **space qualification of the newest technologies** (stitched detector)

Thank you!