Lorenzo Paolozzi — Université de Genève and CERN

Established by the European Comm

MONOLITH - picosecond capability in a high granularity monolithic silicon pixel detector

SiGe BiCMOS

MONOLITHIC

PicoAD©**:** Picosecond Avalanche **Detector**

avoid complexity and cost of hybrids minimize material

Our recipe for picosecond timing with silicon:

Funded by the H2020 ERC Advanced grant 884447, **July 2020 - June 2025**

The UniGe Silicon Team

Roberto Cardarelli INFN Rome2 & UNIGE

Marzio Nessi CERN & UNIGE

Main research partners:

- Lead ASIC design
- Analog electronics

Holger Rücker IHP Mikroelektronik

- ASIC design
- Digital electronics

Matteo Elviretti IHP Mikroelektronik

MONOLITHI

Giuseppe Iacobucci • Project PI

Thanushan Kugathasan

- Sensor simulation
- Data analysis

Leonardo Cecconi

- System integration
- **Laboratory tests**

- Board design
- RO system

Stefano Zambito

Sergio Gonzalez-Sevilla System integration

Laboratory tests

- Laboratory tests
- Data analysis

- Board design
- RO system

Jordi Sabater Iglesias

- Detector simulation
- Laboratory tests

- Sensor design
- Analog electronics

Matteo Milanesio

- Laboratory tests
- Data analysis

Antonio Picardi

- ASIC design
- Analog electronics

Rafaella Kotitsa

Carlo Alberto Fenoglio

- Digital electronics
- ASIC test

Didier Ferrere

Yannick Favre

Stéphane Débieux

Lorenzo Paolozzi

Roberto Cardella

- Sensor design
- Analog/Dig electronics

Viros Sriskaran

• Analog electronics

Mateus Vicente

- System integration
- Laboratory tests

• Laboratory tests • Data analysis

Théo Moretti

- Laboratory tests
- Data analysis

- Laboratory tests
- Data analysis

Luca Iodice

- Analog electronics
- ASIC test

Andrea Pizarro Medina

- Data analysis
- Laboratory tests

2022 prototype without gain layer

PicoAD©**:** Picose cond Avalanche Detector

SiGe BiCMOS

Established by the European Commissio

MONOLITHIC

UniGe monolithic prototype

Lorenzo Paolozzi — *Université de Genève* Strasbourg, November 21 2024

-
- ‣ **Sensor**: epilayer 350Ωcm, 50µm thick
	- → simple pn junction, no gain layer
- ‣ **Electronics**: SiGe HBT frontend

‣ matrix of: 12x12 hexagonal pixels 100µm pitch

‣ results from 4 analog channels

Leading-edge **IHP SG13G2** technology, **130 nm** process featuring **SiGe HBT**

Radiation tolerance studies in collaboration with **KEK** and **IHP** colleagues. **8 samples** of MONOLITH prototype2 were irradiated with protons in Japan up to 1x10¹⁶ neq/cm²

MONOLIT

Radiation hardness of SiGe HBTs

Radiation hardness of SiGe HBTs

8 samples of MONOLITH prototype2 were irradiated with protons in Japan up to 1x10¹⁶ neq/cm²

7 out of the 8 irradiated boards had **damaged voltage regulators**: we had to **bypass** them with wire bond

Radiation tolerance studies in collaboration with **KEK** and **IHP** colleagues.

Efficiency vs. sensor bias voltage

- Unirradiated: Efficiency = $(99.96 \pm 0.02)\%$ at $HV = 200 V$
- 1x10¹⁶ n_{eq}/cm² : Efficiency = $(99.7 \pm 0.1)\%$ at $HV = 300V$ (higher HV still to be exploited)

CERN SPS testbeam results:

We performed a very simple analysis of the data taken with the **analog channels**:

- **1. Linear interpolation** of oscilloscope samplings (25ps)
- 2. Time Of Arrival taken at **50% of signal height**
- **3. No further time-walk correction applied**

Unirradiated: **20 ps** at HV = 200 V

• 1x10¹⁶ n_{eq}/cm² : **45 ps** at HV = 300V (higher HV still to be exploited)

Time resolution vs. sensor bias voltage

MONOLIT

CERN SPS testbeam results:

Time resolution vs. proton fluence

MONOLITH prototype 2 - no gain layer 60 **CERN SPS Testbeam: 120 GeV/c pions** $P_{density} = 0.9$ W/cm² \blacktriangleright HV = 200 V \div HV = 300 V Proton Fluence $[n]$ 10^{14} 10^{16} $\bf{0}$ $/cm²$

eq

S. Díez et al, IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587- 593, doi: 10.1109/NSSMIC.2010.5873828.

Summary

- limited by Landau noise
- \blacktriangleright 1x10¹⁶ n_{eq}/cm^2 Efficiency = 99.7% and time resolution = 45 ps $(200 \rightarrow 300V)$
	-

The UniGe monolithic SiGe BiCMOS prototype ASIC provided: ‣ Not irradiated: **Efficiency = 99.9%** and **time resolution = 20 ps**

This performance was obtained with a 50 µm thick sensor **without gain layer using SiGe HBT electronics**

If the **radiation tolerance of gain layers** remains a concern, particle-physics experiments can do excellent timing **without** gain layer

Peak transition frequency vs. technology node

SiGe HBT & CMOS: f^T

28 nm CMOS and 130 nm SiGe HBT have same peak fr

A. Mai and M. Kaynak, SiGe-BiCMOS based technology platforms for mm-wave and radar applications. DOI: 10.1109/MIKON.2016.7492062

SiGe HBT & CMOS: speed vs. power

- at peak ft (without a load): three times less power for same timing
- at peak ft, if you put a load: three times less power for twice better timing
- at equal (lower) power: SiGe HBT ≈ 3 times faster (**but** size of CMOS transistors would become prohibitively large)

SiGe BiCMOS availability & growth

Smartphones Optical fiber networks *source: https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/*

1. new IHP process SG13G3Cu, **now available through EUROPRACTICE,** includes transistor with $f_T/f_{max} = 500/700$ GHz $(f_T/f_{max} = 350/450$ GHz for SG13G2 process)

IoT Devices

Microwave Communication

Automotive: LiDAR, Radar and **Ethernet**

HDD preamplifiers, line drivers, Ultra-high speed DAC/ADCS

Markets served by SiGe BiCMOS:

SiGe BiCMOS

PicoAD©**:** Picosecond Avalanche **Detector**

MONOLITHIC

Results with **PicoAD** prototypes (with gain layer)

PicoAD Sensor Concept

© G. Iacobucci, L. Paolozzi and P. Valerio. Multi-junction pico-avalanche detector; **European Patent** EP3654376A1, **US Patent** US2021280734A1, Nov 2018

PicoAD:

Multi-Junction Picosecond-Avalanche Detector ©

with continuous and deep gain layer:

- De-correlation from implant size & geometry ➙ **high pixel granularity and full fill factor** (to get homogeneous efficiency and timing)
- Only the small fraction of charge produced in the thin **"absorption layer"** gets amplified ➙ **reduced charge-collection (Landau) noise** (to enhance timing resolution, like a very thin LGAD)
- Landau noise of initial part of the signal is minimal ➙ **keep threshold low** (to enhance timing resolution)

Monolithic PicoAD **proof-of-concept** ASIC produced in 2022 →

2024 PicoAD production

15 different flavours produced; in 4 geometries.

Tested at CERN SPS beamline

Testbeam of 2024 PicoAD prototype

Typical signal pulse

Much improved uniformity of the electric field due to 1. larger "drift" epilayer (10 \rightarrow 15 µm)

2. larger resistivity (50 \rightarrow 350 Qcm). produced an avalanche detector that gains everywhere.

Testbeam of 2024 PicoAD prototype

 $\sigma_t = \sqrt{12.5^2 - 4.9^2} = 11.5 \text{ps}$ Preliminary full offline analysis for one working point gives : ToAPicoAD - ToAMCP = **12.5 ps** Subtraction in quadrature of MCP contribution MCP resolution

Testbeam of 2024 PicoAD prototype

Standard process

- Improving transistor isolation in pixel and reducing parasitic capacitance
- First prototype submitted for production in August 2024

Modified process

PicoAD — Summary & Outlook

The PicoAD© sensor works (*JINST* 17 (2022) 10 P10032 ; *JINST* 17 (2022) 17 P10040) Testbeam of the monolithic ASIC provided: ‣ **Efficiency = 99.9 %** including inter-pixel regions \triangleright **Time resolution** $\sigma_t = 11.5$ ps Measurements still going on.

We produced a **fully efficient** avalanche detector with **homogeneous gain everywhere**

Although the UNIGE research programme concentrated so far on monolithic detectors, **standalone PicoAD sensors** can be produced to be hybridised on a readout ASIC (discussions started with a manufacturer leader in the field of silicon sensors)

UniGe monolithic SiGe BiCMOS ASICs

PicoAD © (gain layer)

> **12 ps** *JINST* **17** P10032 *JINST* **17** P10040 + paper in preparation

moderate radiation level extremely thin timing layers, e.g. mu3e experiment (Lorenzo Paolozzi)

photonics

(Thanushan Kugathasan) (Roberto Cardella)

future possibilities

is now complete

high-radiation tolerance high granularity timing layers for **particle physics**

Extra Material

PicoAD p.o.c.: Gain with ⁵⁵Fe source

- mainly ~5.9 keV photons
- ‣ point-like charge deposition

X-rays from ⁵⁵Fe radioactive source:

We found a double-peak spectrum

- ‣ photon absorbed in **drift region** ➡**holes** drift through gain layer & multiplied ➡**first peak** in the spectrum
- ‣ photon absorbed in **absorption region** ➡**electrons** through gain layer & multiplied ➡**second peak** in the spectrum

Gain measured: ~20 for ⁵⁵Fe

(corresponding to ~60 for a m.i.p.)

Test Beam: Experimental Setup

SPS testbeam in 2023 with 120 GeV/c pions to measure **efficiency** and **time resolution**

UNIGE FE-I4 telescope to provide spatial information ($\sigma_{x,y} \approx 10 \mu m$) **Two MCPs** ($\sigma_t \approx 5$ ps) to provide the timing reference

Laser measurement

Lorenzo Paolozzi — *Université de Genève* Strasbourg, November 21 2024

20 ps is pretty close the limit of a PN junction without gain layer, due to Landau noise

S. Díez et al, IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587-593, doi: 10.1109/NSSMIC.2010.5873828.

Radiation hardness of SiGe HBTs

Time resolution vs. proton fluence

S. Díez et al, IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, 2010, pp. 587-593, doi: 10.1109/NSSMIC.2010.5873828.

From: J.D. Cressler, IEEE transactions on nuclear science, vol. 60, n. 3 (2013)

2024 PicoAD: ⁵⁵Fe and ⁹⁰Sr Measurements

Testbeam PicoAD proof-of-concept (2022)

99.9% for all power consumptions

MONOLIT

30 ps at **0.4 W/cm² 17 ps** at **2.7 W/cm²**

Testbeam PicoAD proof-of-concept (2022)

Time resolution by Signal MPV amplitude PicoAD

