

Evaluation of pixel sensors produced with a commercial 150nm CMOS process for the CMS Phase-2 Upgrade

ARCHITECTURE

Thierry Guillaume Harte PIXEL Conference 2024 20.11.2024

Introduction

CMS Inner Tracker Phase-2 Upgrade

- **Experiment at CERN LHC**
- Upgrade to High Luminosity LHC
	- Nominal Luminosity increased x7.5
	- \sim 10x higher data collection rate than previous 10 years of LHC

Challenges for Inner Tracker

- High radiation (order 10^{16} 1 MeV n_{eg}/cm² over lifespan)
- «pile-up» of up to 200

ETH zürich

• Required latency of 12.5 μs for Trigger

Needs replacement of the full Inner Tracker

Introduction

CMS Phase-2 Hybrid pixels

- CMS RD53B (CROC) read-out chip
- $25x100$ μm² pixel pitch, \sim 150 km thick
- Different sensor designs evaluated

LFoundry CMOS process

- «Sub-reticles» as building blocks for wafer $(-1cm^2)$
- Stitching within sensitive area of sensor
	- Allows for large sensors (here up to $\sim 16 \text{cm}^2$)

Advantages

- Use of commercial production lines
	- Higher throughput

ETHzürich

Smaller feature sizes than conventional methods

 AB

A2 A1 A1

B3

R

Introduction

LFoundry CMOS sensors

3 prototype sizes:

IP4

Small and Large sensor to be used with single CROC read-out chip

Quad sensor to be used with 4 CROC read-out chips per sensor

IV-curves

 $|Pf$

- Testing yield of sensors using IV-curves
	- Negative Bias from back side
	- Ground through «bias grid» All pixels connected through in-pixel resistors
- **Breakdown voltage**
	- Sharp increase of leakage current by voltage

Example of a sensor of each category

IV-curves

- 3 conditions chosen for breakdown definition
- All have to be fulfilled to decide breakdown

ETHzürich

- High yield for small sensors
- Low yield for the larger sensors
	- Not fully understood why

CV-curves

Measure capacitance with CV-measurement Performed with LCR-meter (10 kHz)

- Calculation of depletion voltage
	- Below depletion: $\frac{1}{C_1^2} \propto U_{ext}$
	- $\frac{1}{C^2} \approx const$ – Above depletion:
- Wafer resistivity estimation

$$
\rho(\Omega\cdot\mathrm{cm})=\frac{d^2}{0.3^2\cdot U_{depl}}\bigg(\frac{\mu\mathrm{m}^2}{\mathrm{V}}\bigg)
$$

– Measured: 6'145 Ωcm

ETHzürich

– Expected from wafer: 4'000-8'000 Ωcm

ETHzürich

Modules

Testbeam studies performed with multiple sensors on Single-chip modules:

Irradiation

IP,

- After initial testbeam with fresh sensors
	- 2 sensors irradiated with 24 GeV proton beam at IRRAD @CERN
	- Expected fluences in Barrel around Layer 2 and 3

8

The

Phase-2

[Upgrade](https://cds.cern.ch/record/2272264)

<u>ុ</u> the CMS

Tracker

T
Tu

Testbeam setup

- SPS @CERN 120 GeV pion beam
- CMOS modules in climate controlled box
	- $-$ T_{box} \sim -35 $^{\circ}$ C

Charge collection studies

- CROC charge measurement in ToT with 4bit resolution
- **Fit of Landau convoluted with Gauss**
	- Landau: charge deposition
	- Gauss: different noise effects

Approximation of expected **Most Probable Value** $\Delta_p (keV) = 12.325 + ln(\xi/I) = x(um)(0.1791 + 0.01782 \cdot ln(x(um)))$ $\zeta = 0.1535 \cdot \frac{z^2 \cdot Z}{4 \beta^2} \rho = 1.78 \cdot 10^{-2} / \beta = 0.0178$ **ETH** zürich

- Charge collection for fresh sensor as expected
	- Lower charge collection for irradiated sensors
		- Charge trapping effects from irradiation

Efficiency studies

Measurement of efficiency of LFoundry sensors, Hits on sensor compared with tracks reconstructed in telescope

- **Efficiency x Acceptance**
	- Acceptance:

ETHzürich

relative amount of active pixels in region of interest

Fresh

Irradiated

0.84

PIXEL Conference - LFoundry CMOS sensor Evaluation – Thierry Guillaume Harte 20.1204 100 1500 1500 1200 11.
200 11.2020 11.2024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12.0024 12
201

Efficiency vs. row number

Testbeam studies

Efficiency studies

Measurement of efficiency of LFoundry sensors, Hits on sensor compared with hits in Telescope planes

Stitching lines

IP,

- Regions where two sub-reticles are «stitched» together on the wafer
- No observable differences found at subreticle edges
- Efficiency similar to surrounding for low and high V_{bias}

Summary

Sensors produced with commercial CMOS process

- For hybrid detectors
- Evaluated on wafer level and as single-chip modules in testbeams

Wafer level testing

- High yield for smaller sensors
- Low yield for larger sensors \rightarrow Not fully understood
- Full depletion at \sim 40V, in line with approximated wafer resistivity

Testbeam

- Charge collection following expected pattern
- High efficiencies for both fresh and irradiated (ca. 6 -8 10^{15} 1MeV n_{eq}/cm^2) sensors
	- Fresh: Around 99.9%

ETH zürich

- Irradiated: 98.0% 99.7%
- No differences observed along stitching lines

Backup

LFoundry sensor

Bias Grid

- Every pixel has two contacts
	- One to ROC pixel
	- One to «bias grid»
- Bias grid connects all pixels through large in-pixel resistor
- Possibility to bias all pixels at the same time without ROC (Resistors in parallel)
- High-ohmic connection between pixels (Resistors in series)

CV-curves

Determination of the full depletion voltage with CV-measurement

Performed with LCR-meter

Calculation of Capacitance by Voltage

- Below depletion: $\frac{1}{C^2} \propto U_{ext}$
- Above depletion: $\frac{1}{C^2} \approx const$

Resistivity estimation $\rho(\Omega \cdot \text{cm}) = \frac{d^2}{0.3^2 \cdot U_{den}} \left(\frac{\mu \text{m}^2}{V}\right)$

Measured: 6'145 Ωcm²

ETHzürich

Expected from wafer: $4'000-8'000$ Ωcm²

Capacitance Quad Sensor 16A7 Q6

September 2022: Module tuning

Tuning of DUTs:

ETHzürich

Resolution studies

Determining the spatial resolution of sensors

Different effects observed worsening reconstruction (e.g. bending effects support plate)

Therefore data-driven approach for $\sigma_{\text{telescope}}$.

- Measure spread of rising slope along long axis of pixels
- Effect from sensor resolution very small
- Results in combined resolution of telescope and background effects

Resolution studies

- Resolution depends on the incident angle due to charge sharing information
- Perpendicular incidence: 0°

PIXEL Conference - LFoundry CMOS sensor Evaluation – Thierry Guillaume Harte 20.11.2024 19