

Evaluation of pixel sensors produced with a commercial 150nm CMOS process for the CMS Phase-2 Upgrade

Thierry Guillaume Harte PIXEL Conference 2024 20.11.2024

Introduction

CMS Inner Tracker Phase-2 Upgrade

- Experiment at CERN LHC
- Upgrade to High Luminosity LHC
 - Nominal Luminosity increased x7.5
 - ~10x higher data collection rate than previous 10 years of LHC

Challenges for Inner Tracker

- High radiation (order 10¹⁶ 1 MeV n_{eq}/cm² over lifespan)
- «pile-up» of up to 200
- Required latency of 12.5 μs for Trigger

Needs replacement of the full Inner Tracker

Introduction

CMS Phase-2 Hybrid pixels

- CMS RD53B (CROC) read-out chip
- $25x100\mu m^2$ pixel pitch, ~150 μm thick
- Different sensor designs evaluated

LFoundry CMOS process

- «Sub-reticles» as building blocks for wafer (~1cm²)
- Stitching within sensitive area of sensor
 - Allows for large sensors (here up to ~16cm²)

Advantages

- Use of commercial production lines
 - Higher throughput
- Smaller feature sizes than conventional methods

Introduction

LFoundry CMOS sensors

3 prototype sizes:

IP4

Label	Size [mm ²]	Sensors [#]
Small	330.92	18
Large	805.97	56
Quad	1550.82	96

Small and Large sensor to be used with single CROC read-out chip

Quad sensor to be used with 4 CROC read-out chips per sensor

IV-curves

P4

- Testing yield of sensors using IV-curves
 - Negative Bias from back side
 - Ground through «bias grid»
 All pixels connected through in-pixel resistors
- Breakdown voltage
 - Sharp increase of leakage current by voltage

Category	Breakdown
Red	<45 V
Yellow	>=45V <100V
Green	>=100V

Example of a sensor of each category

IV-curves

- 3 conditions chosen for breakdown definition
- All have to be fulfilled to decide breakdown

Metric	Condition
Abs Voltage	>20V
Abs Current	>0.75 µA/cm ²
Slope	>20% increase over 5V

Category	Breakdown
Red	<45 V
Yellow	>=45V <100V
Green	>=100V

- High yield for small sensors
- Low yield for the larger sensors
 - Not fully understood why

CV-curves

Measure capacitance with CV-measurement Performed with LCR-meter (10 kHz)

- Calculation of depletion voltage
 - —
 - Below depletion: $\frac{1}{C^2} \propto U_{ext}$ Above depletion: $\frac{1}{C^2} \approx const$ _
- Wafer resistivity estimation

$$ho(\Omega \cdot {
m cm}) = rac{d^2}{0.3^2 \cdot U_{depl}} igg(rac{\mu {
m m}^2}{{
m V}}igg)$$

- Measured: 6'145 Ω cm
- Expected from wafer: 4'000-8'000 Ωcm -

ETH zürich

Modules

Testbeam studies performed with multiple sensors on Single-chip modules:

Module name	Sensor Type	Irradiation [1MeV n _{eq} /cm ²]
LF-17_S1	Small	ca. 6-8 10 ¹⁵
LF-12_S1	Small	ca. 6-8 10 ¹⁵
LF-12_L1	Large	-
LF-17_L1	Large	-

Irradiation

IP4

- After initial testbeam with fresh sensors
 - 2 sensors irradiated with 24 GeV proton beam at IRRAD @CERN
 - Expected fluences in Barrel around -Layer 2 and 3

8

The Pha [neq lence Flu

Testbeam setup

- SPS @CERN 120 GeV pion beam •
- CMOS modules in climate controlled box
 - T_{box}~-35°C

Charge collection studies

ETHzürich

- CROC charge measurement in ToT with 4bit resolution
- Fit of Landau convoluted with Gauss
 - Landau: charge deposition
 - Gauss: different noise effects

Approximation of expected **Most Probable Value** $\Delta_p(keV) = 12.325 + ln(\xi/I) = x(um)(0.1791 + 0.01782 \cdot ln(x(um)))$ $\xi = 0.1535 \cdot \frac{z^2 \cdot Z}{A\beta^2}\rho = 1.78 \cdot 10^{-2}/\beta = 0.0178$

- Charge collection for fresh sensor as expected
 - Lower charge collection for irradiated sensors
 - Charge trapping effects from irradiation

Efficiency studies

Measurement of efficiency of LFoundry sensors, Hits on sensor compared with tracks reconstructed in telescope

- Efficiency x Acceptance
 - Acceptance:

ETH zürich

relative amount of active pixels in region of interest

Fresh

Module	Sensor	Irradiated	Peak Efficiency
LF_17_S1	small	-	99.82%
LF_12_S1	small	-	99.65%
LF_12_L1	large	-	99.85%
LF_12_L1	large	-	99.95%

Irradiated

Module	Sensor	Irrad [1MeV n _{eq} /cm ²]	Peak Efficiency
LF_17_S1	small	ca. 6-8 10 ¹⁵	99.75%
LF_12_S1	small	ca. 6-8 10 ¹⁵	98.02%

0.86

0.84

300

350

400

450

 V_{bias} [V]

500

550

600

PIXEL Conference - LFoundry CMOS sensor Evaluation - Thierry Guillaume Harte

700

LF 17-S1 LF 12-S1

650

Efficiency vs. row number

Testbeam studies

Efficiency studies

Measurement of efficiency of LFoundry sensors, Hits on sensor compared with hits in Telescope planes

Stitching lines

IP4

- Regions where two sub-reticles are «stitched» together on the wafer
- No observable differences found at subreticle edges
- Efficiency similar to surrounding for low and high V_{bias}

Summary

Sensors produced with commercial CMOS process

- For hybrid detectors
- Evaluated on wafer level and as single-chip modules in testbeams

Wafer level testing

- High yield for smaller sensors
- Low yield for larger sensors \rightarrow Not fully understood
- Full depletion at ~40V, in line with approximated wafer resistivity

Testbeam

- Charge collection following expected pattern
- High efficiencies for both fresh and irradiated (ca. 6-8 10^{15} 1MeV n_{eq} /cm²) sensors
 - Fresh: Around 99.9%
 - Irradiated: 98.0% 99.7%
- No differences observed along stitching lines

Backup

LFoundry sensor

Bias Grid

- Every pixel has two contacts
 - One to ROC pixel
 - One to «bias grid»
- Bias grid connects all pixels through large in-pixel resistor
- Possibility to bias all pixels at the same time without ROC (Resistors in parallel)
- High-ohmic connection between pixels (Resistors in series)

CV-curves

Determination of the full depletion voltage with CV-measurement

Performed with LCR-meter

Calculation of Capacitance by Voltage

- Below depletion: $rac{1}{C^2} \propto U_{ext}$
- Above depletion: $rac{1}{C^2} pprox const$

Resistivity estimation $ho(\Omega \cdot cm) = rac{d^2}{0.3^2 \cdot U_{depl}} \left(rac{\mu m^2}{V}\right)$

- Measured: 6'145 Ω cm²
- Expected from wafer: 4'000-8'000 Ω cm²

Capacitance Quad Sensor 16A7_Q6

September 2022: Module tuning

Tuning of DUTs:

Module	Sensor	Bias [V]	Threshold [e ⁻]	Masked pixels	Irradiated [1MeV neq/cm ²]
LF_17_S1	small	80	1325	641 / 0.5%	-
LF_17_S1	small	300	1200	222 / 0.1%	ca. 6-8 10 ¹⁵
LF_12_S1	small	80	1200	201 / 0.5%	-
LF_12_S1	small	300	1200	498 / 1.1%	ca. 6-8 10 ¹⁵
LF_12_L1	large	110	1500	10	-
LF_12_L1	large	80	1200	22	-

LF_17_S1

LF_12_L1

ETH zürich

Resolution studies

Determining the spatial resolution of sensors

Different effects observed worsening reconstruction (e.g. bending effects support plate)

Therefore data-driven approach for $\sigma_{\text{telescope.}}$

- Measure spread of rising slope along long axis of pixels
- Effect from sensor resolution very small •
- Results in combined resolution of telescope and background effects

Residual in local X

Resolution studies

- Resolution depends on the incident angle due to charge sharing information
- Perpendicular incidence: 0°

ETH zürich

10

angles [°]

20

15